Hirota’s difference equations
暂无分享,去创建一个
[1] G. Segal,et al. Loop groups and equations of KdV type , 1985 .
[2] N. Saitoh,et al. Linearization of bilinear difference equations , 1987 .
[3] Ryogo Hirota,et al. Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation , 1977 .
[4] L. Faddeev,et al. Quantum inverse scattering method on a spacetime lattice , 1992 .
[5] A. Valleriani,et al. DYNKIN TBA'S , 1992 .
[6] P. Pearce,et al. Conformal weights of RSOS lattice models and their fusion hierarchies , 1992 .
[7] T. Miwa. On Hirota's difference equations , 1982 .
[8] M. Jimbo,et al. TRANSFORMATION GROUPS FOR SOLITON EQUATIONS , 1982 .
[9] Masaki Kashiwara,et al. Operator Approach to the Kadomtsev-Petviashvili Equation —Transformation Groups for Soliton Equations III— , 1981 .
[10] K. Takasaki,et al. Toda lattice hierarchy , 1984 .
[11] Sergei Petrovich Novikov,et al. NON-LINEAR EQUATIONS OF KORTEWEG-DE VRIES TYPE, FINITE-ZONE LINEAR OPERATORS, AND ABELIAN VARIETIES , 1976 .
[12] M. Jimbo,et al. Solitons and Infinite Dimensional Lie Algebras , 1983 .
[13] R. Hirota. Discrete Two-Dimensional Toda Molecule Equation , 1987 .
[14] Y. Suris. A discrete-time relativistic Toda lattice , 1995, solv-int/9510007.
[15] A. Zhedanov,et al. Faces of Relativistic Toda Chain , 1997 .
[16] A. Mironov,et al. Towards unified theory of $2d$ gravity , 1992 .
[17] A. Zamolodchikov. On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories , 1991 .
[18] Alexei Zhedanov,et al. Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials , 1994 .
[19] V. Matveev,et al. Differential-difference evolution equations. II (Darboux transformation for the Toda lattice) , 1979 .
[20] Ryogo Hirota,et al. Nonlinear Partial Difference Equations. IV. Bäcklund Transformation for the Discrete-Time Toda Equation , 1978 .
[21] FUNCTIONAL RELATIONS IN SOLVABLE LATTICE MODELS I: FUNCTIONAL RELATIONS AND REPRESENTATION THEORY , 1993, hep-th/9309137.
[22] Dressing method, Darboux transformation and generalized restricted flows for the KdV hierarchy , 1993 .
[23] Mikio Sato. Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold , 1983 .
[24] A. Orlov,et al. Non-local integrable equations as reductions of the Toda hierarchy , 1991 .
[25] Leon A. Takhtajan,et al. Hamiltonian methods in the theory of solitons , 1987 .
[26] Yasuhiro Ohta,et al. Casorati and Discrete Gram Type Determinant Representations of Solutions to the Discrete KP Hierarchy , 1993 .
[27] U. Pinkall,et al. The discrete quantum pendulum , 1993 .
[28] Ryogo Hirota,et al. Nonlinear Partial Difference Equations. : I. A Difference Analogue of the Korteweg-de Vries Equation , 1977 .
[29] Ryogo Hirota,et al. Nonlinear Partial Difference Equations. V. Nonlinear Equations Reducible to Linear Equations , 1979 .
[30] R. Hirota. Discrete Analogue of a Generalized Toda Equation , 1981 .
[31] V. Matveev,et al. Darboux transformation and explicit solutions of the Kadomtcev-Petviaschvily equation, depending on functional parameters , 1979 .
[32] M. Kontsevich. Intersection theory on the moduli space of curves , 1991 .
[33] Simon Ruijsenaars,et al. Relativistic Toda systems , 1989 .