A new family of mesoporous molecular sieves prepared with liquid crystal templates

The synthesis, characterization, and proposed mechanism of formation of a new family of silicatelaluminosilicate mesoporous molecular sieves designated as M41S is described. MCM-41, one member of this family, exhibits a hexagonal arrangement of uniform mesopores whose dimensions may be engineered in the range of - 15 A to greater than 100 A. Other members of this family, including a material exhibiting cubic symmetry, have ken synthesized. The larger pore M41S materials typically have surface areas above 700 m2/g and hydrocarbon sorption capacities of 0.7 cc/g and greater. A templating mechanism (liquid crystal templating-LCT) in which surfactant liquid crystal structures serve as organic templates is proposed for the formation of these materials. In support of this templating mechanism, it was demonstrated that the structure and pore dimensions of MCM-41 materials are intimately linked to the properties of the surfactant, including surfactant chain length and solution chemistry. The presence of variable pore size MCM-41, cubic material, and other phases indicates that M41S is an extensive family of materials.

[1]  W. H. Toliver,et al.  Liquid Crystals , 1912, Nature.

[2]  G. Oster,et al.  Scattering from cylindrically symmetric systems , 1952 .

[3]  G. T. Kerr Chemistry of Crystalline Aluminosilicates. I. Factors Affecting the Formation of Zeolite A , 1966 .

[4]  J. Ciric Kinetics of zeolite A crystallization , 1968 .

[5]  P. A. Winsor Binary and multicomponent solutions of amphiphilic compounds. Solubilization and the formation, structure, and theoretical significance of liquid crystalline solutions , 1968 .

[6]  R. M. Barrer,et al.  The crystal structure of the synthetic zeolite L , 1969 .

[7]  A. Chester,et al.  Quantitative thermoanalysis of evolved ammonia. Application to ammonium zeolite y and some transition metal ammine chlorides , 1971 .

[8]  E. Ruiz-Hitzky,et al.  Intracrystalline grafting on layer silicic acids , 1980, Nature.

[9]  G. Tiddy Surfactant-water liquid crystal phases , 1980 .

[10]  G. Maciel,et al.  Silicon-29 NMR study of the surface of silica gel by cross polarization and magic-angle spinning , 1980 .

[11]  G. Maciel,et al.  Cross-polarization magic-angle-spinning silicon-29 nuclear magnetic resonance study of silica gel using trimethylsilane bonding as a probe of surface geometry and reactivity , 1982 .

[12]  H. Beinert,et al.  Mössbauer studies of beef heart aconitase: evidence for facile interconversions of iron-sulfur clusters. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. Harris,et al.  Silicon-29 NMR studies of aqueous silicate solutions: Part IV. Tetraalkylammonium hydroxide solutions , 1982 .

[14]  G. Maciel,et al.  Silicon-29 NMR study of dehydrated/rehydrated silica gel using cross polarization and magic-angle spinning , 1983 .

[15]  H. Beinert,et al.  The role of iron in the activation-inactivation of aconitase. , 1983, The Journal of biological chemistry.

[16]  SOLID‐STATE NMR STUDIES OF THE REACTIONS OF SILICA SURFACES WITH POLYFUNCTIONAL CHLOROMETHYLSILANES AND ETHOXYMETHYLSILANES , 1983 .

[17]  P. Moore,et al.  An X-ray structural study of cacoxenite, a mineral phosphate , 1983, Nature.

[18]  H. Beinert,et al.  Iron-sulfur stoichiometry and structure of iron-sulfur clusters in three-iron proteins: evidence for [3Fe-4S] clusters. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[19]  T. Pinnavaia,et al.  Intercalated Clay Catalysts , 1983, Science.

[20]  G. Maciel,et al.  Silicon-29 nuclear magnetic resonance study of hydroxyl sites on dehydrated silica gel surfaces, using silylation as a probe , 1983 .

[21]  K. Kawazoe,et al.  METHOD FOR THE CALCULATION OF EFFECTIVE PORE SIZE DISTRIBUTION IN MOLECULAR SIEVE CARBON , 1983 .

[22]  H. Beinert,et al.  Three-iron clusters in iron-sulfur proteins. , 1983, Archives of biochemistry and biophysics.

[23]  J. Tossell Correlation of 29Si nuclear magnetic resonance chemical shifts in silicates with orbital energy differences obtained from X-ray spectra , 1984 .

[24]  J. Smith,et al.  Nets with channels of unlimited diameter , 1984, Nature.

[25]  É. Lippmaa,et al.  Solid-state high-resolution silicon-29 chemical shifts in silicates , 1984 .

[26]  Atmospheric oxygen as the dominant source of 29Si spin-lattice relaxation in solid silicalite , 1985 .

[27]  A. Clearfield,et al.  Intercalation of n-alkylamines by α-zirconium phosphate , 1985 .

[28]  E. Oldfield,et al.  Prediction of silicon-29 nuclear magnetic resonance chemical shifts using a group electronegativity approach: applications to silicate and aluminosilicate structures , 1985 .

[29]  H. Beinert,et al.  Mössbauer studies of aconitase. Substrate and inhibitor binding, reaction intermediates, and hyperfine interactions of reduced 3Fe and 4Fe clusters. , 1985, The Journal of biological chemistry.

[30]  C. Kresge,et al.  Aluminium-independent cation exchange of internal siloxy groups in ZSM-5 and ZSM-11 , 1985 .

[31]  H. Pfeifer,et al.  1H MAS NMR studies on the acidity of zeolites , 1986 .

[32]  J. Serratosa,et al.  29Si MAS‐N.M.R. spectra of lamellar silicic acid H‐magadiite and its trimethylsilyl derivative , 1986 .

[33]  J. Klinowski,et al.  The origin of 29Si spin–lattice relaxation in zeolites: a means of rapid acquisition of n.m.r. spectra and of probing internal sites in microporous catalysts , 1986 .

[34]  K. Schmitt,et al.  On the presence of internal silanol groups in ZSM-5 and the annealing of these sites by steaming , 1987 .

[35]  É. Lippmaa,et al.  500 MHz 1H-MAS n.m.r. studies of dealuminated HZSM-5 zeolites , 1987 .

[36]  J. Newsam Silicon-29 chemical shifts in sodalite materials , 1987 .

[37]  H. Pfeifer,et al.  1H-MAS n.m.r. studies of ZSM-5 type zeolites , 1987 .

[38]  C. Stout,et al.  7-Iron ferredoxin revisited. , 1988, The Journal of biological chemistry.

[39]  B. Sherriff,et al.  Calculations of 29Si MAS NMR chemical shift from silicate mineral structure , 1988, Nature.

[40]  K. Kuroda,et al.  Organic derivatives of layered polysilicates. I. Trimethylsilylation of magadiite and kenyaite , 1988 .

[41]  T. D. Harris,et al.  Surface derivatization and isolation of semiconductor cluster molecules , 1988 .

[42]  C. Kissinger,et al.  Structure of the 3 iron-4 sulfur cluster in Desulfovibrio gigas ferredoxin II , 1988 .

[43]  Mark E. Davis,et al.  A molecular sieve with eighteen-membered rings , 1988, Nature.

[44]  K. Kuroda,et al.  Organic Derivatives of Layered Polysilicates. II. Reaction of Magadiite and Kenyaite with Diphenylmethylchlorosilane , 1988 .

[45]  C. Stout,et al.  Structure of activated aconitase: formation of the [4Fe-4S] cluster in the crystal. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[46]  H. Beinert,et al.  Engineering of protein bound iron‐sulfur clusters , 1989 .

[47]  H. Pfeifer,et al.  MAS NMR studies of silanol groups in zeolites ZSM-5 synthesized with an ionic template , 1990 .

[48]  J. B. Higgins,et al.  Framework topology of AIPO4-8: the first 14-ring molecular sieve , 1990 .

[49]  K. Kuroda,et al.  The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. , 1990 .

[50]  G. W. Kirker,et al.  Preparation of molecular sieves from dense layered metal oxides , 1991 .

[51]  H. J. Schoennagel,et al.  An automated, high precision unit for low‐pressure physisorption , 1991 .

[52]  L. McCusker,et al.  A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening , 1991, Nature.

[53]  Alexis T. Bell,et al.  Studies on the mechanism of ZSM-5 formation , 1991 .

[54]  C. Kissinger,et al.  Refined crystal structure of ferredoxin II from Desulfovibrio gigas at 1.7 A. , 1991, Journal of molecular biology.

[55]  P. C. Rieke,et al.  Innovative materials processing strategies: a biomimetic approach. , 1992, Science.

[56]  R. H. Holm Trinuclear Cuboidal and Heterometallic Cubane-Type Iron–Sulfur Clusters: New Structural and Reactivity Themes in Chemistry and Biology , 1992 .

[57]  Raul F. Lobo,et al.  Zeolite and molecular sieve synthesis , 1992 .