An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems

By introducing the shape functions of virtual node polygonal (VP) elements into the standard extended finite element method (XFEM), a conforming elemental mesh can be created for the cracking process. Moreover, an adaptively refined meshing with the quadtree structure only at a growing crack tip is proposed without inserting hanging nodes into the transition region. A novel dynamic crack growth method termed as VP-XFEM is thus formulated in the framework of fracture mechanics. To verify the newly proposed VP-XFEM, both quasi-static and dynamic cracked problems are investigated in terms of computational accuracy, convergence, and efficiency. The research results show that the present VP-XFEM can achieve good agreement in stress intensity factor and crack growth path with the exact solutions or experiments. Furthermore, better accuracy, convergence, and efficiency of different models can be acquired, in contrast to standard XFEM and mesh-free methods. Therefore, VP-XFEM provides a suitable alternative to XFEM for engineering applications.

[1]  Felício Bruzzi Barros,et al.  Well-conditioning global–local analysis using stable generalized/extended finite element method for linear elastic fracture mechanics , 2016 .

[2]  Thomas-Peter Fries,et al.  Hanging nodes and XFEM , 2011 .

[3]  J. H. Zhang,et al.  A meshfree poly-cell Galerkin (MPG) approach for problems of elasticity and fracture , 2008 .

[4]  D. Rooke,et al.  The dual boundary element method: Effective implementation for crack problems , 1992 .

[5]  M. Rivara,et al.  Local modification of meshes for adaptive and/or multigrid finite-element methods , 1991 .

[6]  S. C. Wu,et al.  Thermal crack growth-based fatigue life prediction due to braking for a high-speed railway brake disc , 2016 .

[7]  D. Nie,et al.  Experimental and numerical study on dynamic fracture behaviour of AISI 1045 steel for compressor crankshaft , 2017 .

[8]  Stéphane Bordas,et al.  The virtual node polygonal element method for nonlinear thermal analysis with application to hybrid laser welding , 2013 .

[9]  T. Q. Bui,et al.  Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method , 2014 .

[10]  J. Prévost,et al.  Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .

[11]  Shuodao Wang,et al.  A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .

[12]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[13]  Alireza Asadpoure,et al.  Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method , 2007 .

[14]  Xuhai Tang,et al.  A novel virtual node method for polygonal elements , 2009 .

[15]  Stéphane Bordas,et al.  Error-controlled adaptive extended finite element method for 3D linear elastic crack propagation , 2017 .

[16]  Dariusz Rozumek,et al.  Cracks growth in S355 steel under cyclic bending with fillet welded joint , 2016 .

[17]  Andreas Schröder,et al.  hp‐adaptive extended finite element method , 2012 .

[18]  Guozheng Kang,et al.  On the fatigue performance and residual life of intercity railway axles with inside axle boxes , 2018, Engineering Fracture Mechanics.

[19]  Jean B. Lasserre,et al.  Modeling crack discontinuities without element‐partitioning in the extended finite element method , 2017 .

[20]  Jeong-Ho Kim,et al.  Mesh refinement strategies without mapping of nonlinear solutions for the generalized and standard FEM analysis of 3‐D cohesive fractures , 2017 .

[21]  Marc Duflot,et al.  Fatigue crack growth analysis by an enriched meshless method , 2004 .

[22]  J. L. Curiel-Sosa,et al.  3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks , 2017 .

[23]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[24]  S. C. Wu,et al.  Cyclic plastic strain based damage tolerance for railway axles in China , 2016 .

[25]  H. Zheng,et al.  Three-dimensional fracture propagation with numerical manifold method , 2016 .

[26]  R. Shield,et al.  Conservation laws in elasticity of the J-integral type , 1977 .

[27]  Meinhard Kuna,et al.  Fracture mechanics based design of a railway wheel made of austempered ductile iron , 2005 .

[28]  Dandan Xu,et al.  Modeling of dynamic crack branching by enhanced extended finite element method , 2014, Computational Mechanics.

[29]  Logah Perumal,et al.  A Novel Virtual Node Hexahedral Element with Exact Integration and Octree Meshing , 2016 .

[30]  Soheil Mohammadi,et al.  Mixed mode fracture analysis of adiabatic cracks in homogeneous and non-homogeneous materials in the framework of partition of unity and the path-independent interaction integral , 2014 .

[31]  C. Armando Duarte,et al.  On the enrichment zone size for optimal convergence rate of the Generalized/Extended Finite Element Method , 2016, Comput. Math. Appl..

[32]  Rong Tian,et al.  Improved XFEM: Accurate and robust dynamic crack growth simulation , 2016 .

[33]  Eugenio Giner,et al.  An Abaqus implementation of the extended finite element method , 2009 .

[34]  Grégory Legrain,et al.  On the use of the extended finite element method with quadtree/octree meshes , 2011 .

[35]  Dandan Xu,et al.  Extended finite element method analysis for shielding and amplification effect of a main crack interacted with a group of nearby parallel microcracks , 2016 .

[36]  Paul A. Wawrzynek,et al.  Automated 3‐D crack growth simulation , 2000 .

[37]  Hans Minnebo,et al.  Three‐dimensional integration strategies of singular functions introduced by the XFEM in the LEFM , 2012 .

[38]  Elizaveta Gordeliy,et al.  Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems , 2015 .

[39]  Zhen Wang,et al.  Numerical modeling of 3-D inclusions and voids by a novel adaptive XFEM , 2016, Adv. Eng. Softw..

[40]  Ionel Nistor,et al.  Numerical implementation of the eXtended Finite Element Method for dynamic crack analysis , 2008, Adv. Eng. Softw..

[41]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[42]  M. H. Aliabadi,et al.  THREE-DIMENSIONAL CRACK GROWTH SIMULATION USING BEM , 1994 .

[43]  V. F. González-Albuixech,et al.  Convergence of domain integrals for stress intensity factor extraction in 2‐D curved cracks problems with the extended finite element method , 2013 .

[44]  T. Strouboulis,et al.  The generalized finite element method: an example of its implementation and illustration of its performance , 2000 .

[45]  Wing Kam Liu,et al.  A physically short fatigue crack growth approach based on low cycle fatigue properties , 2017 .

[46]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[47]  Bijay K. Mishra,et al.  The numerical simulation of fatigue crack growth using extended finite element method , 2012 .

[48]  Yoshitaka Wada,et al.  Fatigue crack growth simulation in heterogeneous material using s-version FEM , 2014 .

[49]  Kurt Maute,et al.  A simple and efficient preconditioning scheme for heaviside enriched XFEM , 2013, 1312.6092.

[50]  T. Belytschko,et al.  Crack propagation by element-free Galerkin methods , 1995 .

[51]  F. V. Antunes,et al.  A review on 3D-FE adaptive remeshing techniques for crack growth modelling , 2015 .

[52]  Longfei Wen,et al.  Improved XFEM—An extra-dof free, well-conditioning, and interpolating XFEM , 2015 .

[53]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[54]  Hung Nguyen-Xuan,et al.  A theoretical study on the smoothed FEM (S‐FEM) models: Properties, accuracy and convergence rates , 2010 .

[55]  Li Guangyao,et al.  A simple and less-costly meshless local Petrov-Galerkin (MLPG) method for the dynamic fracture problem , 2006 .

[56]  M. D. C. Ferreira,et al.  An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method , 2015 .

[57]  Hans Albert Richard,et al.  Theoretical crack path prediction , 2005 .

[58]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[59]  Adrian J. Lew,et al.  An optimally convergent discontinuous Galerkin‐based extended finite element method for fracture mechanics , 2010 .

[60]  Indra Vir Singh,et al.  Fatigue crack growth simulations of 3-D problems using XFEM , 2013 .

[61]  N. Sukumar,et al.  Exact integration scheme for planewave-enriched partition of unity finite element method to solve the Helmholtz problem , 2017 .

[62]  Ted Belytschko,et al.  THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS , 1999 .

[63]  Uwe Zerbst,et al.  An investigation on the influence of rotary bending and press fitting on stress intensity factors and fatigue crack growth in railway axles , 2008 .

[64]  N. Recho,et al.  The mixed-mode investigation of the fatigue crack in CTS metallic specimen , 2006 .

[65]  Juan José Ródenas,et al.  Locally equilibrated stress recovery for goal oriented error estimation in the extended finite element method , 2013, ArXiv.

[66]  Romesh C. Batra,et al.  DETERMINATION OF CRACK TIP FIELDS IN LINEAR ELASTOSTATICS BY THE MESHLESS LOCAL PETROV-GALERKIN (MLPG) METHOD , 2001 .

[67]  Stepan Vladimirovitch Lomov,et al.  Mesh superposition applied to meso‐FE modelling of fibre‐reinforced composites: Cross‐comparison of implementations , 2017 .

[68]  H. Nguyen-Dang,et al.  Multiple-cracked fatigue crack growth by BEM , 1995 .

[69]  Timon Rabczuk,et al.  Modeling and simulation of kinked cracks by virtual node XFEM , 2015 .

[70]  Thomas Eason,et al.  A two-scale generalized finite element method for interaction and coalescence of multiple crack surfaces , 2016 .

[71]  Adrian J. Lew,et al.  Stability and convergence proofs for a discontinuous-Galerkin-based extended finite element method for fracture mechanics , 2010 .

[72]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[73]  Jacob Fish,et al.  On adaptive multilevel superposition of finite element meshes for linear elastostatics , 1994 .

[74]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[75]  P. Kerfriden,et al.  Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth , 2017 .

[76]  N. Sukumar,et al.  Extended finite element method on polygonal and quadtree meshes , 2008 .

[77]  Bhushan Lal Karihaloo,et al.  Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery , 2006 .

[78]  小山 毅,et al.  拡張有限要素法(XFEM)・一般化有限要素法(GFEM)を用いた材料モデリングのレビュー Ted Belytschko,Robert Gracie and Giulio Ventura:A Review of Extended/Generalized Finite Element Methods for Material Modeling [Modeling and Simulations in Materials Science and Engineering, Vol.17, 043001, June 2009](構造,文献抄録) , 2010 .

[79]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[80]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[81]  Jin-U Park,et al.  Efficient finite element analysis using mesh superposition technique , 2003 .

[82]  Amir R. Khoei,et al.  3D modeling of cohesive crack growth in partially saturated porous media: A parametric study , 2014 .

[83]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[84]  Raimondo Betti,et al.  Nondestructive identification of multiple flaws using XFEM and a topologically adapting artificial bee colony algorithm , 2013 .

[85]  Xuhai Tang,et al.  A novel twice-interpolation finite element method for solid mechanics problems , 2010 .

[86]  Pierre-Olivier Bouchard,et al.  Crack propagation modelling using an advanced remeshing technique , 2000 .