A Hybrid Material Point Method for Frictional Contact with Diverse Materials

We present a new hybrid Lagrangian Material Point Method for simulating elastic objects like hair, rubber, and soft tissues that utilizes a Lagrangian mesh for internal force computation and an Eulerian mesh for self collision as well as coupling with external materials. While recent Material Point Method (MPM) techniques allow for natural simulation of hyperelastic materials represented with Lagrangian meshes, they utilize an updated Lagrangian discretization where the Eulerian grid degrees of freedom are used to take variations of the potential energy. This often coarsens the degrees of freedom of the Lagrangian mesh and can lead to artifacts. We develop a hybrid approach that retains Lagrangian degrees of freedom while still allowing for natural coupling with other materials simulated with traditional MPM, e.g. sand, snow, etc. Furthermore, while recent MPM advances allow for resolution of frictional contact with codimensional simulation of hyperelasticity, they do not generalize to the case of volumetric materials. We show that our hybrid approach resolves these issues. We demonstrate the efficacy of our technique with examples that involve elastic soft tissues coupled with kinematic skeletons, extreme deformation, and coupling with multiple elastoplastic materials. Our approach also naturally allows for two-way rigid body coupling.

[1]  Chenfanfu Jiang,et al.  A material point method for viscoelastic fluids, foams and sponges , 2015, Symposium on Computer Animation.

[2]  Chenfanfu Jiang,et al.  Multi-species simulation of porous sand and water mixtures , 2017, ACM Trans. Graph..

[3]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[4]  Xuchen Han,et al.  A material point method for thin shells with frictional contact , 2018, ACM Trans. Graph..

[5]  Dinesh K. Pai,et al.  Eulerian solid simulation with contact , 2011, ACM Trans. Graph..

[6]  Eitan Grinspun,et al.  Continuum Foam , 2015, ACM Trans. Graph..

[7]  Ming Gao,et al.  Animating fluid sediment mixture in particle-laden flows , 2018, ACM Trans. Graph..

[8]  Dinesh K. Pai,et al.  Thin skin elastodynamics , 2013, ACM Trans. Graph..

[9]  John A. Nairn,et al.  A new method for material point method particle updates that reduces noise and enhances stability , 2017 .

[10]  Florence Bertails-Descoubes,et al.  A semi-implicit material point method for the continuum simulation of granular materials , 2016, ACM Trans. Graph..

[11]  Ming C. Lin,et al.  A continuum model for simulating crowd turbulence , 2014, SIGGRAPH '14.

[12]  Chenfanfu Jiang,et al.  Augmented MPM for phase-change and varied materials , 2014, ACM Trans. Graph..

[13]  Francis H Harlow,et al.  The particle-in-cell method for numerical solution of problems in fluid dynamics , 1962 .

[14]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[15]  James E. Guilkey,et al.  Implicit time integration for the material point method: Quantitative and algorithmic comparisons with the finite element method , 2003 .

[16]  Tae-Yong Kim,et al.  Air meshes for robust collision handling , 2015, ACM Trans. Graph..

[17]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.

[18]  Chenfanfu Jiang,et al.  Anisotropic elastoplasticity for cloth, knit and hair frictional contact , 2017, ACM Trans. Graph..

[19]  Eftychios Sifakis,et al.  Globally coupled collision handling using volume preserving impulses , 2008, SCA '08.

[20]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[21]  D. Sulsky,et al.  A particle method for history-dependent materials , 1993 .

[22]  E. Vouga,et al.  Discrete viscous threads , 2010, ACM Trans. Graph..

[23]  David I. W. Levin,et al.  Eulerian solid simulation with contact , 2011, SIGGRAPH 2011.

[24]  E. Grinspun,et al.  Discrete elastic rods , 2008, SIGGRAPH 2008.

[25]  Chenfanfu Jiang,et al.  A polynomial particle-in-cell method , 2017, ACM Trans. Graph..

[26]  Dinesh K. Pai,et al.  Active volumetric musculoskeletal systems , 2014, ACM Trans. Graph..

[27]  Ming C. Lin,et al.  Aggregate dynamics for dense crowd simulation , 2009, ACM Trans. Graph..

[28]  Andre Pradhana,et al.  GPU optimization of material point methods , 2018, ACM Trans. Graph..

[29]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[30]  Eftychios Sifakis,et al.  To appear in the ACM SIGGRAPH conference proceedings Detail Preserving Continuum Simulation of Straight Hair , 2009 .

[31]  Marie-Paule Cani,et al.  Super-helices for predicting the dynamics of natural hair , 2006, SIGGRAPH 2006.

[32]  Andrew Selle,et al.  Detail preserving continuum simulation of straight hair , 2009, SIGGRAPH 2009.

[33]  Dinesh K. Pai,et al.  Eulerian-on-lagrangian simulation , 2013, TOGS.

[34]  Eitan Grinspun,et al.  Supplemental : A Multi-Scale Model for Simulating Liquid-Hair Interactions , 2017 .

[35]  Ming C. Lin,et al.  Continuum modeling of crowd turbulence. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Chenfanfu Jiang,et al.  The material point method for simulating continuum materials , 2016, SIGGRAPH Courses.

[37]  Theodore Kim,et al.  Eulerian solid-fluid coupling , 2016, ACM Trans. Graph..

[38]  Eitan Grinspun,et al.  A multi-scale model for simulating liquid-fabric interactions , 2018, ACM Trans. Graph..

[39]  Kui Wu,et al.  Real-time hair mesh simulation , 2016, I3D.

[40]  Shi-Min Hu,et al.  A Temporally Adaptive Material Point Method with Regional Time Stepping , 2018, Comput. Graph. Forum.

[41]  Andre Pradhana,et al.  Drucker-prager elastoplasticity for sand animation , 2016, ACM Trans. Graph..

[42]  Eftychios Sifakis,et al.  An adaptive generalized interpolation material point method for simulating elastoplastic materials , 2017, ACM Trans. Graph..

[43]  Chenfanfu Jiang,et al.  A level set method for ductile fracture , 2013, SCA '13.

[44]  Xiong Zhang,et al.  Contact algorithms for the material point method in impact and penetration simulation , 2011 .

[45]  J. Barbič FEM Simulation of 3 D Deformable Solids : A practitioner ’ s guide to theory , discretization and model reduction . Part 2 : Model Reduction ( version : August 4 , 2012 ) , 2012 .

[46]  Andre Pradhana,et al.  A moving least squares material point method with displacement discontinuity and two-way rigid body coupling , 2018, ACM Trans. Graph..

[47]  J. Teran,et al.  Dynamic anticrack propagation in snow , 2018, Nature Communications.

[48]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[49]  J. Brackbill,et al.  FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions , 1986 .

[50]  Alexey Stomakhin,et al.  Energetically consistent invertible elasticity , 2012, SCA '12.

[51]  Yong Tang,et al.  Dynamically Enriched MPM for Invertible Elasticity , 2017, Comput. Graph. Forum.

[52]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[53]  Eitan Grinspun,et al.  Hybrid grains , 2018, ACM Trans. Graph..

[54]  Zhen Chen,et al.  The material point method , 2015 .

[55]  Ronald Fedkiw,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Hybrid Simulation of Deformable Solids , 2022 .