Experimental localisation of quantum entanglement through monitored classical mediator

Quantum entanglement is a form of correlation between quantum particles that cannot be increased via local operations and classical communication. It has therefore been proposed that an increment of quantum entanglement between probes interacting solely via mediator implies nonclassicality of the mediator. Indeed, under certain assumptions about the initial state, entanglement gain between the probes indicates quantum coherence in the mediator. Going beyond such assumptions, there exist other initial states which produce entanglement between the probes via only local interactions with the classical mediator. In this process the initial entanglement between any probe and the rest of the system "flows through" the classical mediator and gets localised between the probes. Here we demonstrate experimentally the growth of quantum correlations between two nuclear spin qubits interacting with a mediator qubit. The experimental realisation uses liquid-state NMR spectroscopy on dibromofluoromethane where carbon spin mediates interactions between hydrogen and fluorine spins. We additionally monitor, i.e. dephase, the mediator in order to emphasise its classical character. Quantum entanglement still gets localised through such monitored and classical mediator. Our results indicate necessity of verifying features of the initial state if entanglement gain between the probes is the figure of merit witnessing non-classical mediator. Such methods were proposed to have exemplary applications in quantum optomechanics, quantum biology and quantum gravity.

[1]  S. Bose,et al.  Mesoscopic entanglement through central–potential interactions , 2020, Journal of Physics B: Atomic, Molecular and Optical Physics.

[2]  Mauro Paternostro,et al.  Observable quantum entanglement due to gravity , 2019, npj Quantum Information.

[3]  T. S. Mahesh,et al.  Violation of entropic Leggett-Garg inequality in nuclear spins , 2012, 1210.1970.

[4]  Vlatko Vedral,et al.  Probing quantum features of photosynthetic organisms , 2017, npj Quantum Information.

[5]  R. Schnabel,et al.  Experimental entanglement distribution by separable states. , 2013, Physical review letters.

[6]  T. Paterek,et al.  Nonclassicality of spin structures in condensed matter: An analysis of Sr14Cu24O41 , 2019, Physical Review B.

[7]  H. Kalbitzer,et al.  Protein NMR Spectroscopy. Principles and Practice , 1997 .

[8]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[9]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[10]  João Teles,et al.  Quantum information processing by nuclear magnetic resonance on quadrupolar nuclei , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Priya Batra,et al.  Push-Pull Optimization of Quantum Controls , 2019, Physical Review Research.

[12]  Hermann Kampermann,et al.  Quantum cost for sending entanglement. , 2012, Physical review letters.

[13]  Gerardo Adesso,et al.  Lectures on General Quantum Correlations and their Applications , 2017 .

[14]  Mauro Paternostro,et al.  Spin Entanglement Witness for Quantum Gravity. , 2017, Physical review letters.

[15]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[16]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[17]  G. Gour,et al.  Quantum resource theories , 2018, Reviews of Modern Physics.

[18]  T. S. Mahesh,et al.  Ancilla-assisted quantum state tomography in multiqubit registers , 2013 .

[19]  M. Lewenstein,et al.  Progress towards a unified approach to entanglement distribution , 2014, 1412.5885.

[20]  T. Morimae,et al.  Power of one nonclean qubit , 2017 .

[21]  Abdulrahim Al Balushi,et al.  Optomechanical quantum Cavendish experiment , 2018, Physical Review A.

[22]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[23]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[24]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[25]  Gerd Leuchs,et al.  Distributing entanglement with separable states. , 2013, Physical review letters.

[26]  J. Cavanagh Protein NMR Spectroscopy: Principles and Practice , 1995 .

[27]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[28]  Wei Teufelsdreck,et al.  Chin , 2021, COMARCA PERDIDA.

[29]  Quantum system control optimization , 2008 .

[30]  V Vedral,et al.  Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity. , 2017, Physical review letters.

[31]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[32]  Wang An-min,et al.  Experimental Creation of Entanglement Using Separable States , 2005 .

[33]  M Paternostro,et al.  Quantum discord bounds the amount of distributed entanglement. , 2012, Physical review letters.

[34]  K Sivapriya,et al.  Experimental implementation of a three qubit quantum game with corrupt source using nuclear magnetic resonance quantum information processor. , 2007, Journal of magnetic resonance.

[35]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[36]  F. Verstraete,et al.  Separable States can be used to distribute entanglement. , 2003, Physical review letters.

[37]  T. Paterek,et al.  Experimental distribution of entanglement with separable carriers. , 2013, Physical review letters.

[38]  Thomas Hellman PHIL , 2018, Encantado.

[39]  T. Paterek,et al.  Excessive distribution of quantum entanglement , 2015, 1506.01816.

[40]  Michal Horodecki Simplifying Monotonicity Conditions for Entanglement Measures , 2005, Open Syst. Inf. Dyn..

[41]  Mauro Paternostro,et al.  Revealing Nonclassicality of Inaccessible Objects. , 2016, Physical review letters.

[42]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[43]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.