Determination of the current–voltage characteristics of concentrator systems by using different adapted conventional techniques

The modelling of the current–voltage characteristics of HCPV (high concentrator photovoltaic) modules is fundamental for the design, monitoring and energy prediction of HCPV systems and power plants. However, the modelling of these devices is inherently different and more complex than that of conventional PV (photovoltaic) modules. Because of this, considerable efforts have been done to develop models tailored to the specific features of this technology. However, there is still a lack of studies and techniques concerning the modelling of the whole I–V curve of HCPV modules. In the present work, the possibility of obtaining the I–V curve of a HCPV module by applying common methods exploited in conventional PV technology by using the effective irradiance and cell temperature is analysed. In particular, the studied methods are: the single exponential model, the Blasser's method and the bilinear interpolation method. Every method has been adapted to be entirely function of the effective irradiance and cell temperature of the concentrator. Results show that all the methods present a good performance in the estimation of the I–V curve of a concentrator, with an average RMSE (root mean square error) ranging from 1.15% to 5.23%, and an average MBE (mean bias error) close to 0%.

[1]  Anis Sellami,et al.  Application of the Genetic Algorithms for Identifying the Electrical Parameters of PV Solar Generators , 2011 .

[2]  Eduardo F. Fernández,et al.  A new procedure for estimating the cell temperature of a high concentrator photovoltaic grid connected system based on atmospheric parameters , 2015 .

[3]  Gerald Siefer,et al.  Analysis of temperature coefficients for III–V multi‐junction concentrator cells , 2014 .

[4]  Eduardo F. Fernández,et al.  Multijunction Concentrator Solar Cells: Analysis and Fundamentals , 2015 .

[5]  D. Elizondo,et al.  Multilayer perceptron applied to the estimation of the influence of the solar spectral distribution on thin-film photovoltaic modules , 2013 .

[6]  F. Almonacid,et al.  Efficiencies and Energy Balance in High-Concentrator Photovoltaic Devices , 2015 .

[7]  H. Brindley,et al.  Impact of individual atmospheric parameters on CPV system power, energy yield and cost of energy , 2014 .

[8]  Antonio J. Garcia-Loureiro,et al.  Multi-junction solar cells electrical characterization by neuronal networks under different irradiance, spectrum and cell temperature , 2015 .

[9]  M. Tivanov,et al.  Determination of solar cell parameters from its current–voltage and spectral characteristics , 2005 .

[10]  Eduardo F. Fernández,et al.  Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization , 2014 .

[11]  Pedro Pérez-Higueras,et al.  Levelised cost of electricity in high concentrated photovoltaic grid connected systems: Spatial analysis of Spain , 2015 .

[12]  B. Marion,et al.  Current–voltage curve translation by bilinear interpolation , 2004 .

[13]  G. Peharz,et al.  YieldOpt, a model to predict the power output and energy yield for concentrating photovoltaic modules , 2015 .

[14]  Yue Hao,et al.  A simple and efficient solar cell parameter extraction method from a single current-voltage curve , 2011 .

[15]  Eduardo F. Fernández,et al.  Calculation of the cell temperature of a high concentrator photovoltaic (HCPV) module: A study and comparison of different methods , 2014 .

[16]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[17]  Jorge Aguilera,et al.  A bankable method of assessing the performance of a CPV plant , 2014 .

[18]  K. Araki,et al.  Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan , 2013 .

[19]  J. Phillips,et al.  A comparative study of extraction methods for solar cell model parameters , 1986 .

[20]  Kenji Araki,et al.  Temperature distribution in 820X CPV module during outdoor operation , 2012 .

[21]  Llanos Mora-López,et al.  Modelling photovoltaic modules with neural networks using angle of incidence and clearness index , 2015 .

[22]  Florencia Almonacid,et al.  Spectrally corrected direct normal irradiance based on artificial neural networks for high concentrator photovoltaic applications , 2014 .

[23]  Llanos Mora-López,et al.  Photovoltaic module simulation by neural networks using solar spectral distribution , 2013 .

[24]  Eduardo F. Fernández,et al.  Models for the electrical characterization of high concentration photovoltaic cells and modules: A review , 2013 .

[25]  Eduardo F. Fernández,et al.  A two subcell equivalent solar cell model for III–V triple junction solar cells under spectrum and temperature variations , 2013 .

[26]  Manuel Fuentes,et al.  Modelling the influence of atmospheric conditions on the outdoor real performance of a CPV (Concentrated Photovoltaic) module , 2014 .

[27]  Eduardo F. Fernández,et al.  A method for estimating cell temperature at the maximum power point of a HCPV module under actual operating conditions , 2014 .

[28]  A. Ortiz-Conde,et al.  New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics , 2006 .

[29]  M. Steiner,et al.  Estimation of the influence of Fresnel lens temperature on energy generation of a concentrator photovoltaic system , 2012 .

[30]  Joseph Appelbaum,et al.  Dependence of multi-junction solar cells parameters on concentration and temperature , 2014 .

[31]  G. Blaesser,et al.  Extrapolation of outdoor measurements of PV array I–V characteristics to standard test conditions , 1988 .

[32]  Eduardo F. Fernández,et al.  Model for the prediction of the maximum power of a high concentrator photovoltaic module , 2013 .

[33]  P. Mialhe,et al.  Simple parameter extraction method for illuminated solar cells , 2006 .

[34]  Eduardo F. Fernández,et al.  Relation between the cell temperature of a HCPV module and atmospheric parameters , 2012 .

[35]  Leonardo Micheli,et al.  The High-Concentrator Photovoltaic Module , 2015 .

[36]  Eduardo F. Fernández,et al.  Model for estimating the energy yield of a high concentrator photovoltaic system , 2015 .

[37]  William E. McMahon,et al.  Fill factor as a probe of current‐matching for GaInP2/GaAs tandem cells in a concentrator system during outdoor operation , 2008 .

[38]  J. A. Ruiz-Arias,et al.  Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions , 2014 .

[39]  Manuel Fuentes,et al.  Characterisation of Si-crystalline PV modules by artificial neural networks , 2009 .

[40]  Gerald Siefer,et al.  A method for using CPV modules as temperature sensors and its application to rating procedures , 2011 .

[41]  Eduardo F. Fernández,et al.  Experimental analysis of the spectral factor for quantifying the spectral influence on concentrator photovoltaic systems under real operating conditions , 2015 .

[42]  M. Niwano,et al.  An extensively valid and stable method for derivation of all parameters of a solar cell from a single current-voltage characteristic , 2008 .

[43]  M. Chegaar,et al.  Extracting dc parameters of solar cells under illumination , 2004 .

[44]  G. Peharz,et al.  A simple method for quantifying spectral impacts on multi-junction solar cells , 2009 .

[45]  L. Hontoria,et al.  Characterisation of PV CIS module by artificial neural networks. A comparative study with other methods , 2010 .

[46]  Meiying Ye,et al.  Parameter extraction of solar cells using particle swarm optimization , 2009 .

[47]  Pedro Pérez-Higueras,et al.  High concentrator photovoltaic module simulation by neuronal networks using spectrally corrected direct normal irradiance and cell temperature , 2015 .

[48]  S. Kurtz,et al.  Translating outdoor CPV I–V measurements to a CSTC power rating and the associated uncertainty , 2015 .

[49]  Steve Askins,et al.  Power rating of CPV systems based on spectrally corrected DNI , 2012 .

[50]  P. G. Vidal,et al.  Outdoor evaluation of concentrator photovoltaic systems modules from different manufacturers: first results and steps , 2013 .

[51]  Carl R. Osterwald,et al.  Photovoltaic module calibration value versus optical air mass: the air mass function , 2014 .

[52]  Daniel T. Cotfas,et al.  Methods to determine the dc parameters of solar cells: A critical review , 2013 .