Multimaterial piezoelectric fibres.
暂无分享,去创建一个
J D Joannopoulos | J. Joannopoulos | P. Rakich | Y. Fink | S. Egusa | F. Sorin | N. Chocat | A. Stolyarov | Z. Wang | Z. Ruff | D. Shemuly | Y Fink | S Egusa | Z Wang | N Chocat | Z M Ruff | A M Stolyarov | D Shemuly | F Sorin | P T Rakich
[1] P. Russell,et al. Generation of permanent optically induced second-order nonlinearities in optical fibers by poling. , 1988, Optics letters.
[2] A. J. Lovinger. Ferroelectric Polymers , 1983, Science.
[3] J. Fujimoto,et al. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. , 2005, Optics express.
[4] H. Kawai,et al. The Piezoelectricity of Poly (vinylidene Fluoride) , 1969 .
[5] Ralph Morrison. Grounding and Shielding , 2007 .
[6] H. Ohigashi,et al. Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers , 1986 .
[7] Measurement of the refractive-index modulation generated by electrostriction-induced acoustic waves in optical fibers. , 1996, Optics letters.
[8] T. Furukawa. Ferroelectric properties of vinylidene fluoride copolymers , 1989 .
[9] John D Joannopoulos,et al. Dynamic all-optical tuning of transverse resonant cavity modes in photonic bandgap fibers. , 2005, Optics letters.
[10] Qiming Zhang,et al. Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature , 2008, Science.
[11] I.P. Kaminow,et al. Principles and applications of ferroelectrics and related materials , 1978, Proceedings of the IEEE.
[12] Danilo De Rossi,et al. Electroactive polymer-based devices for e-textiles in biomedicine , 2005, IEEE Transactions on Information Technology in Biomedicine.
[13] F. A. Andrews,et al. Laser Heterodyne System for Measurement and Analysis of Vibration , 1970 .
[14] Anders Bjarklev,et al. Optical devices based on liquid crystal photonic bandgap fibres. , 2003, Optics express.
[15] K. Matsushige,et al. The II-I crystal transformation of poly(vinylidene fluoride) under tensile and compressional stresses , 1980 .
[16] O. Shapira,et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. , 2007, Nature materials.
[17] S. Hart. Multilayer composite photonic bandgap fibers , 2004 .
[18] J. Lando,et al. The polymorphism of poly(vinylidene fluoride) IV. The structure of high-pressure-crystallized poly(vinylidene fluoride) , 1970 .
[19] David N. Payne,et al. Broadband metal/glass single-mode fibre polarisers , 1986 .
[20] J. Lando,et al. The polymorphism of poly(vinylidene fluoride). I. The effect of head-to-head structure , 1968 .
[21] J. Joannopoulos,et al. In-fiber semiconductor filament arrays. , 2008, Nano letters.
[22] P. Curie,et al. Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées , 1880 .
[23] Yoni Jesner,et al. Saving lives. , 2019, Midwifery today with international midwife.
[24] Éric Pinet. Medical applications: Saving lives , 2008 .
[25] T. Yagi,et al. Transition Behavior and Dielectric Properties in Trifluoroethylene and Vinylidene Fluoride Copolymers , 1980 .
[26] John D. Joannopoulos,et al. Static and Dynamic Properties of Optical Microcavities in Photonic Bandgap Yarns , 2003 .
[27] Robert S. Windeler,et al. Integrated all-fiber variable attenuator based on hybrid microstructure fiber , 2001 .
[28] X. Lurton. An Introduction to Underwater Acoustics , 2002 .
[29] M. Fokine,et al. Integrated fiber Mach-Zehnder interferometer for electro-optic switching. , 2002, Optics letters.
[30] Anton Peterlin,et al. Nuclear magnetic resonance and x‐ray determination of the structure of poly(vinylidene fluoride) , 1966 .
[31] Xavier Lurton,et al. An Introduction to Underwater Acoustics: Principles and Applications , 2010 .
[32] K. Kimura,et al. Ferroelectric properties of poly(vinylidenefluoride‐trifluoroethylene) copolymer thin films , 1983 .
[33] A. A. Vives. Piezoelectric transducers and applications , 2004 .