Optimization of Microtextured Light-Management Films for Enhanced Light Trapping in Organic Solar Cells Under Perpendicular and Oblique Illumination Conditions

To improve light absorption in organic solar cells, microscale surface-textured light-management (LM) films are applied on top of the front glass substrate. In this study, numerical simulations are employed to determine the optimal texture of the LM films that would result in the highest short-circuit current density of the solar cells in perpendicular, as well as oblique, illumination conditions. Different types of 2-D periodic surface textures are analyzed (pyramidal, parabolic, sinusoidal), and the effects of the period and groove height sizes are investigated. Numerical simulations are based on a model that combines geometric optics and wave optics and, thus, enables simulation of light propagation through the thick microtextured LM film and glass, as well as thin layers of the device, respectively. Results show that parabolic textures are the most advantageous for the solar cells to achieve high performance operating in changing illumination conditions. When properly optimized, they enable over 14% boost of the short-circuit current density in a broad range of illumination incident angles, with the maximum of 22% for perpendicular incidence, with respect to that of the nontextured cell.

[1]  Volker Wittwer,et al.  Diffraction gratings and buried nano-electrodes—architectures for organic solar cells , 2004 .

[2]  Josep Ferré-Borrull,et al.  Two-dimensional finite-element modeling of periodical interdigitated full organic solar cells , 2013 .

[3]  Suresh Chand,et al.  Recent progress and future aspects of organic solar cells , 2012 .

[4]  Chen-Ming Chen,et al.  Manufacture of light-trapping (LT) films by ultraviolet (UV) irradiation and their applications for polymer solar cells (PSCs) , 2012 .

[5]  Martin A. Green,et al.  High performance light trapping textures for monocrystalline silicon solar cells , 2001 .

[6]  L. S. Roman,et al.  Modeling photocurrent action spectra of photovoltaic devices based on organic thin films , 1999 .

[7]  Mikkel Jørgensen,et al.  Upscaling of polymer solar cell fabrication using full roll-to-roll processing. , 2010, Nanoscale.

[8]  Viktor Andersson,et al.  Optical modeling of a folded organic solar cell , 2008 .

[9]  Martin A. Green,et al.  Solar cell efficiency tables (version 41) , 2013 .

[10]  Ximin He,et al.  Controlling nanoscale morphology in polymer photovoltaic devices , 2010 .

[11]  Martin A. Green,et al.  Solar cell efficiency tables , 1993 .

[12]  R. Brendel,et al.  Modeling light trapping and electronic transport of waffle-shaped crystalline thin-film Si solar cells , 1999 .

[13]  Jin Jang,et al.  Optical Modeling and Analysis of Organic Solar Cells with Coherent Multilayers and Incoherent Glass Substrate Using Generalized Transfer Matrix Method , 2011 .

[14]  A. Gombert,et al.  Functional microprism substrate for organic solar cells , 2006 .

[15]  C. Brabec,et al.  Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells , 2007 .

[16]  Olle Inganäs,et al.  Full day modelling of V-shaped organic solar cell , 2011 .

[17]  Christophe Ballif,et al.  Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells , 2013 .

[18]  S. Chaudhary,et al.  Design of light-trapping microscale-textured surfaces for efficient organic solar cells. , 2010, Optics express.

[19]  Marko Topič,et al.  OPTICAL MODEL FOR THIN-FILM PHOTOVOLTAIC DEVICES WITH LARGE SURFACE TEXTURES AT THE FRONT SIDE , 2012 .

[20]  Viktor Andersson,et al.  Folded reflective tandem polymer solar cell doubles efficiency , 2007 .

[21]  Walter Hu,et al.  Nanoimprinted polymer solar cell. , 2012, ACS nano.

[22]  F. Smole,et al.  Parasitic absorption in the rear reflector of a silicon solar cell: Simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors , 2014 .

[23]  Mats Andersson,et al.  Trapping light in polymer photodiodes with soft embossed gratings , 2000 .

[24]  Marko Topič,et al.  Two Approaches for Incoherent Propagation of Light in Rigorous Numerical Simulations , 2013 .

[25]  W. Choy,et al.  A study of optical properties enhancement in low-bandgap polymer solar cells with embedded PEDOT:PSS gratings , 2012 .

[26]  Olle Inganäs,et al.  Fabrication of a light trapping system for organic solar cells , 2009 .

[27]  E. Drouard,et al.  Light harvesting in organic solar cells , 2010 .

[28]  Suren A. Gevorgyan,et al.  Stability of Polymer Solar Cells , 2012, Advanced materials.

[29]  Peter Peumans,et al.  An effective light trapping configuration for thin-film solar cells , 2007 .

[30]  Olle Inganäs,et al.  Trapping light with micro lenses in thin film organic photovoltaic cells. , 2008, Optics express.

[31]  J. Krč,et al.  Design and Optimisation of Thin-Film Silicon PV Modules with Surface-Textured Front Glass by Using a Combined Geometric Optics / Wave Optics Model , 2012 .

[32]  Karl Leo,et al.  Light trapping in organic solar cells , 2008 .

[33]  P. Blom,et al.  Combined optical and electrical modeling of polymer: fullerene bulk heterojunction solar cells , 2008 .

[34]  Chang-Ki Moon,et al.  Highly Enhanced Light Extraction from Surface Plasmonic Loss Minimized Organic Light‐Emitting Diodes , 2013, Advanced materials.