Terahertz heterodyne receiver with quantum cascade laser and hot electron bolometer mixer in a pulse tube cooler

A liquid cryogen-free terahertz heterodyne receiver in a pulse tube cooler has been realized. The receiver operates at 2.5 THz. It is based on a quantum cascade laser (QCL) as local oscillator and a hot electron bolometric mixer. A detailed study of the QCL beam quality yielded a beam propagation factor of 1.1–1.2. The double sideband noise temperature of the system is 2000 K and when corrected for optical losses in the signal path it is ∼800 K.

[1]  Herbert M. Pickett,et al.  Microwave Limb Sounder THz module on Aura , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[2]  H. Hubers,et al.  Terahertz Heterodyne Receivers , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  David A. Ritchie,et al.  Terahertz quantum cascade laser as local oscillator in a heterodyne receiver. , 2005, Optics express.

[4]  Andrey M. Baryshev,et al.  A novel terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer , 2005 .

[5]  M. Siegel,et al.  Terahertz Performance of Integrated Lens Antennas With a Hot-Electron Bolometer , 2007, IEEE Transactions on Microwave Theory and Techniques.

[6]  Alain Maestrini,et al.  Terahertz Sources Based on Frequency Multiplication and Their Applications , 2008 .

[7]  I. Mehdi,et al.  A High-Resolution Imaging Radar at 580 GHz , 2008, IEEE Microwave and Wireless Components Letters.

[8]  A. Kerr Suggestions for revised definitions of noise quantities, including quantum effects , 1999 .

[9]  Boris S. Karasik,et al.  Conversion gain and noise of niobium superconducting hot-electron-mixers , 1995 .

[10]  Manfred Birk,et al.  Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies , 2001 .

[11]  M. Siegel,et al.  Ultra-thin NbN films on Si: crystalline and superconducting properties , 2008 .

[12]  M. Beck,et al.  Far infrared quantum-cascade lasers based on a bound-to-continuum transition , 2001, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[13]  David A. Ritchie,et al.  High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings , 2005 .

[14]  J. Stutzki,et al.  GREAT: a first light instrument for SOFIA , 2008, Astronomical Telescopes + Instrumentation.

[15]  Anthony E. Siegman,et al.  Choice of clip levels for beam width measurements using knife-edge techniques , 1991 .

[16]  Marcella Giovannini,et al.  Turn-key compact high temperature terahertz quantum cascade lasers: imaging and room temperature detection. , 2006, Optics express.

[17]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[18]  T M Klapwijk,et al.  Surface plasmon quantum cascade lasers as terahertz local oscillators. , 2008, Optics letters.

[19]  David A. Ritchie,et al.  High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser , 2006 .