Constraint Nondegeneracy, Strong Regularity, and Nonsingularity in Semidefinite Programming

It is known that the Karush-Kuhn-Tucker (KKT) conditions of semidefinite programming can be reformulated as a nonsmooth system via the metric projector over the cone of symmetric and positive semidefinite matrices. We show in this paper that the primal and dual constraint nondegeneracies, the strong regularity, the nonsingularity of the B-subdifferential of this nonsmooth system, and the nonsingularity of the corresponding Clarke's generalized Jacobian, at a KKT point, are all equivalent. Moreover, we prove the equivalence between each of these conditions and the nonsingularity of Clarke's generalized Jacobian of the smoothed counterpart of this nonsmooth system used in several globally convergent smoothing Newton methods. In particular, we establish the quadratic convergence of these methods under the primal and dual constraint nondegeneracies, but without the strict complementarity.

[1]  Christian Kanzow,et al.  Corrigendum: Semidefinite Programs: New Search Directions, Smoothing-Type Methods, and Numerical Results , 2004, SIAM J. Optim..

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  Alexander Shapiro,et al.  On Eigenvalue Optimization , 1995, SIAM J. Optim..

[4]  E. H. Zarantonello Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory , 1971 .

[5]  Paul Tseng,et al.  Non-Interior continuation methods for solving semidefinite complementarity problems , 2003, Math. Program..

[6]  Karl Löwner Über monotone Matrixfunktionen , 1934 .

[7]  Defeng Sun,et al.  The Strong Second-Order Sufficient Condition and Constraint Nondegeneracy in Nonlinear Semidefinite Programming and Their Implications , 2006, Math. Oper. Res..

[8]  Defeng Sun,et al.  Semismooth Matrix-Valued Functions , 2002, Math. Oper. Res..

[9]  V. Arnold ON MATRICES DEPENDING ON PARAMETERS , 1971 .

[10]  M. Seetharama Gowda,et al.  Inverse and implicit function theorems for H-differentiable and semismooth functions , 2004, Optim. Methods Softw..

[11]  Stephen M. Robinson Constraint Nondegeneracy in Variational Analysis , 2003, Math. Oper. Res..

[12]  J. Holliday Sun , 1995 .

[13]  Defeng Sun,et al.  A Squared Smoothing Newton Method for Nonsmooth Matrix Equations and Its Applications in Semidefinite Optimization Problems , 2003, SIAM J. Optim..

[14]  Defeng Sun,et al.  Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization , 2005, Math. Program..

[15]  S. M. Robinson Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity , 1987 .

[16]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[17]  Michael L. Overton,et al.  Complementarity and nondegeneracy in semidefinite programming , 1997, Math. Program..

[18]  Christian Kanzow,et al.  Quadratic Convergence of a Nonsmooth Newton-Type Method for Semidefinite Programs Without Strict Complementarity , 2005, SIAM J. Optim..

[19]  Jérôme Malick,et al.  Clarke Generalized Jacobian of the Projection onto the Cone of Positive Semidefinite Matrices , 2006 .

[20]  Neil C. Schwertman,et al.  Smoothing an indefinite variance-covariance matrix , 1979 .

[21]  Ilse C. F. Ipsen,et al.  Backward errors for eigenvalue and singular value decompositions , 1994 .

[22]  N. Higham COMPUTING A NEAREST SYMMETRIC POSITIVE SEMIDEFINITE MATRIX , 1988 .

[23]  B. Curtis Eaves,et al.  On the basic theorem of complementarity , 1971, Math. Program..

[24]  Alexander Shapiro,et al.  Sensitivity Analysis of Optimization Problems Under Second Order Regular Constraints , 1998, Math. Oper. Res..

[25]  Alexander Shapiro,et al.  First and second order analysis of nonlinear semidefinite programs , 1997, Math. Program..

[26]  Christian Kanzow,et al.  A COMPARISON OF THREE NONDEGENERACY CONDITIONS FOR SEMIDEFINITE PROGRAMS , 2005 .

[27]  Defeng Sun,et al.  Löwner's Operator and Spectral Functions in Euclidean Jordan Algebras , 2008, Math. Oper. Res..

[28]  F. Clarke,et al.  Topological Geometry: THE INVERSE FUNCTION THEOREM , 1981 .

[29]  Defeng Sun,et al.  Strong Semismoothness of the Fischer-Burmeister SDC and SOC Complementarity Functions , 2005, Math. Program..

[30]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[31]  Paul Tseng,et al.  Merit functions for semi-definite complemetarity problems , 1998, Math. Program..

[32]  Alexander Shapiro,et al.  Second Order Optimality Conditions Based on Parabolic Second Order Tangent Sets , 1999, SIAM J. Optim..

[33]  S. M. Robinson Local structure of feasible sets in nonlinear programming , 1983 .

[34]  S. M. Robinson Local Structure of Feasible Sets in Nonlinear Programming - Part II. Nondegeneracy , 1984 .

[35]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[36]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[37]  A. Shapiro Sensitivity Analysis of Generalized Equations , 2003 .

[38]  Defeng Sun,et al.  A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities , 2000, Math. Program..

[39]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[40]  Paul Tseng,et al.  Analysis of Nonsmooth Symmetric-Matrix-Valued Functions with Applications to Semidefinite Complementarity Problems , 2003, SIAM J. Optim..

[41]  Christian Kanzow,et al.  Semidefinite Programs: New Search Directions, Smoothing-Type Methods, and Numerical Results , 2002, SIAM J. Optim..

[42]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[43]  Toshihiro Matsumoto,et al.  An Algebraic Condition Equivalent to Strong Stability of Stationary Solutions of Nonlinear Positive Semidefinite Programs , 2005, SIAM J. Optim..

[44]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[45]  Christian Kanzow,et al.  Equivalence of Two Nondegeneracy Conditions for Semidefinite Programs , 2007 .

[46]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[47]  B. Kummer Lipschitzian inverse functions, directional derivatives, and applications inC1,1 optimization , 1991 .

[48]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[49]  Defeng Sun,et al.  Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems , 2003, Math. Oper. Res..