A third solution to the eigenvalue problem with supercritical exponent
暂无分享,去创建一个
[1] H. Brezis,et al. H1 versus C1 local minimizers , 1993 .
[2] Robert E. Megginson. An Introduction to Banach Space Theory , 1998 .
[3] E. Harrell,et al. On the fundamental eigenvalue ratio of the p-Laplacian , 2004, math/0411013.
[4] H. Amann. Lusternik-Schnirelman theory and non-linear eigenvalue problems , 1972 .
[5] B. Beauzamy. Introduction to Banach spaces and their geometry , 1985 .
[6] Multiple and sign changing solutions of an elliptic eigenvalue problem with constraint , 2001 .
[7] Yongqing Li. On a Nonlinear Elliptic Eigenvalue Problem , 1995 .
[8] Sign-changing solutions of a p-Laplacian elliptic problem with constraint in RN , 2017 .
[9] J. Gossez,et al. Local "superlinearity"and "sublinearity" for the p-Laplacian , 2009 .
[10] An Lê,et al. Eigenvalue problems for the p-Laplacian , 2006 .
[11] A new form for the differential of the constraint functional in strictly convex reflexive Banach spaces , 2017 .
[12] Yongqing Li,et al. On a p-Laplacian eigenvalue problem with supercritical exponent , 2019, Communications on Pure & Applied Analysis.
[13] LJUSTERNIK‐SCHNIRELMAN Theory on General Level Sets , 1986 .
[14] Remark on solvability of p-Laplacian equations in large dimension , 2009 .
[15] On the eigenvalue problem for the p-Laplacian operator in RN☆ , 2011 .
[16] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[17] On a quasilinear elliptic eigenvalue problem with constraint , 2004 .
[18] Un théorème de valeurs intermédiaires dans les espaces de Sobolev et applications , 1985 .
[19] Shouchuan Hu,et al. Multiple positive solutions for nonlinear eigenvalue problems with the p-Laplacian , 2008 .