A third solution to the eigenvalue problem with supercritical exponent

Abstract In this paper, we establish a new approach to prove the existence of a third solution to the eigenvalue problem with supercritical exponent. This method is also available for the subcritical or critical case.

[1]  H. Brezis,et al.  H1 versus C1 local minimizers , 1993 .

[2]  Robert E. Megginson An Introduction to Banach Space Theory , 1998 .

[3]  E. Harrell,et al.  On the fundamental eigenvalue ratio of the p-Laplacian , 2004, math/0411013.

[4]  H. Amann Lusternik-Schnirelman theory and non-linear eigenvalue problems , 1972 .

[5]  B. Beauzamy Introduction to Banach spaces and their geometry , 1985 .

[6]  Multiple and sign changing solutions of an elliptic eigenvalue problem with constraint , 2001 .

[7]  Yongqing Li On a Nonlinear Elliptic Eigenvalue Problem , 1995 .

[8]  Sign-changing solutions of a p-Laplacian elliptic problem with constraint in RN , 2017 .

[9]  J. Gossez,et al.  Local "superlinearity"and "sublinearity" for the p-Laplacian , 2009 .

[10]  An Lê,et al.  Eigenvalue problems for the p-Laplacian , 2006 .

[11]  A new form for the differential of the constraint functional in strictly convex reflexive Banach spaces , 2017 .

[12]  Yongqing Li,et al.  On a p-Laplacian eigenvalue problem with supercritical exponent , 2019, Communications on Pure & Applied Analysis.

[13]  LJUSTERNIK‐SCHNIRELMAN Theory on General Level Sets , 1986 .

[14]  Remark on solvability of p-Laplacian equations in large dimension , 2009 .

[15]  On the eigenvalue problem for the p-Laplacian operator in RN☆ , 2011 .

[16]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[17]  On a quasilinear elliptic eigenvalue problem with constraint , 2004 .

[18]  Un théorème de valeurs intermédiaires dans les espaces de Sobolev et applications , 1985 .

[19]  Shouchuan Hu,et al.  Multiple positive solutions for nonlinear eigenvalue problems with the p-Laplacian , 2008 .