Randomized Lagrangian heuristic based on Nash equilibrium for large scale single machine scheduling problem

Lagrangian relaxation method for jobshop scheduling problems has been studied in the framework of combinatorial auction. In this paper a noncooperative game model is built for the Lagrangian relaxation method, and we prove that the equivalent continuous relaxation computed from the Lagrangian dual problem provides a mixed strategy Nash equilibrium for this game model. Based on this interpretation a randomized heuristic is exploited to get feasible schedules. Numerical experiments are carried out on a large scale single machine problem.

[1]  Giorgio Gallo,et al.  A Bundle Type Dual-Ascent Approach to Linear Multicommodity Min-Cost Flow Problems , 1999, INFORMS J. Comput..

[2]  S. David Wu,et al.  On combinatorial auction and Lagrangean relaxation for distributed resource scheduling , 1999 .

[3]  Martin W. P. Savelsbergh,et al.  An experimental study of LP-based approximation algorithms for scheduling problems , 1998, SODA '98.

[4]  Luis M. Camarinha-Matos,et al.  Integrated and distributed manufacturing, a multi-agent perspective , 2001 .

[5]  Sehun Kim,et al.  Variable target value subgradient method , 1991, Math. Program..

[6]  Jan Karel Lenstra,et al.  Complexity of machine scheduling problems , 1975 .

[7]  Marshall L. Fisher,et al.  The Lagrangian Relaxation Method for Solving Integer Programming Problems , 2004, Manag. Sci..

[8]  Martin E. Dyer,et al.  Formulating the single machine sequencing problem with release dates as a mixed integer program , 1990, Discret. Appl. Math..

[9]  Krzysztof C. Kiwiel,et al.  Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..

[10]  Drew Fudenberg,et al.  Game theory (3. pr.) , 1991 .

[11]  K. Kiwiel A Cholesky dual method for proximal piecewise linear programming , 1994 .

[12]  Martin Skutella,et al.  Single Machine Scheduling with Release Dates , 2002, SIAM J. Discret. Math..

[13]  Antonio Frangioni,et al.  About Lagrangian Methods in Integer Optimization , 2005, Ann. Oper. Res..

[14]  Laurence A. Wolsey,et al.  A time indexed formulation of non-preemptive single machine scheduling problems , 1992, Math. Program..

[15]  Peter Brucker,et al.  Scheduling Algorithms , 1995 .

[16]  A. M. Geoffrion Lagrangean Relaxation and Its Uses in Integer Programming , 1972 .

[17]  Antonio Frangioni,et al.  Solving semidefinite quadratic problems within nonsmooth optimization algorithms , 1996, Comput. Oper. Res..

[18]  Jochem Zowe,et al.  A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results , 1992, SIAM J. Optim..

[19]  Krishna R. Pattipati,et al.  A practical approach to job-shop scheduling problems , 1993, IEEE Trans. Robotics Autom..