Hybrid semi-parametric modeling in process systems engineering: Past, present and future

Abstract Hybrid semi-parametric models consist of model structures that combine parametric and nonparametric submodels based on different knowledge sources. The development of a hybrid semi-parametric model can offer several advantages over traditional mechanistic or data-driven modeling, as reviewed in this paper. These advantages, such as broader knowledge base, transparency of the modeling approach and cost-effective model development, have been widely recognized, not only in academia but also in the industry. In this paper, the most common hybrid semi-parametric modeling and parameter identification techniques are revisited. Applications in the areas of (bio)chemical engineering for process monitoring, control, optimization, scale-up and model-reduction are reviewed. It is outlined that the application of hybrid semi-parametric techniques does not automatically lead into better results but that rational knowledge integration has potential to significantly improve model-based process operation and design.

[1]  Chrysanthos E. Gounaris,et al.  Modelling of the performance of industrial HDS reactors using a hybrid neural network approach , 2005 .

[2]  Gonzalo Acuña,et al.  Adaptive Control Using a Grey Box Neural Model: An Experimental Application , 2007, ISNN.

[3]  Marcos L. Corazza,et al.  Hybrid modeling of inulinase bio-production process , 2010 .

[4]  W. Fred Ramirez,et al.  Optimization of Fed‐Batch Bioreactors Using Neural Network Parameter Function Models , 1996 .

[5]  Julian Morris,et al.  Identification of semi-parametric hybrid process models , 2011, Comput. Chem. Eng..

[6]  C. A. Kent,et al.  Hybrid modelling for on-line penicillin fermentation optimisation , 2002 .

[7]  Robert Haber Nonlinear System Identification : Input-output Modeling Approach , 1999 .

[8]  Mohd Azlan Hussain,et al.  Adaptive sliding mode control with neural network based hybrid models , 2004 .

[9]  Sangho Lee,et al.  Development of a statistical and mathematical hybrid model to predict membrane fouling and performance. , 2009 .

[10]  Ana P. Teixeira,et al.  Modelling and optimization of a recombinant BHK-21 cultivation process using hybrid grey-box systems. , 2005, Journal of biotechnology.

[11]  Jeroen Lammertyn,et al.  Development and validation of "grey-box" models for refrigeration applications: a review of key concepts , 2006 .

[12]  W. Fred Ramirez,et al.  Neural‐network modeling and optimization of induced foreign protein production , 1999 .

[13]  J. Paulo Davim,et al.  Hybrid Modeling and Optimization of Manufacturing , 2012 .

[14]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  Rimvydas Simutis,et al.  Exploratory Analysis of Bioprocesses Using Artificial Neural Network‐Based Methods , 1997 .

[16]  T. McAvoy,et al.  Integration of multilayer perceptron networks and linear dynamic models : a Hammerstein modeling approach , 1993 .

[17]  Mukul Agarwal,et al.  Online-optimized feed switching in semi-batch reactors using semi-empirical dynamic models , 2000 .

[18]  H J van Can,et al.  An efficient model development strategy for bioprocesses based on neural networks in macroscopic balances. , 1997, Biotechnology and bioengineering.

[19]  J. A. Roubos Bioprocess modeling and optimization: Fed-batch clavulanic acid production by streptomyces clavuligerus , 2002 .

[20]  Wolfgang Marquardt,et al.  A grey-box modeling approach for the reduction of nonlinear systems , 2008 .

[21]  Zhizhong Mao,et al.  Soft-sensor for copper extraction process in cobalt hydrometallurgy based on adaptive hybrid model , 2011 .

[22]  Markus A. Reuter,et al.  A generalized neural-net kinetic rate equation , 1993 .

[23]  Henk B. Verbruggen,et al.  Hybrid model development for fed-batch bioprocesses; combining physical equations with the metabolic network and black-box kinetics ∗ , 1999 .

[24]  Sebastian Engell,et al.  Neural Networks as a Tool for Gray Box Modelling in Reactive Distillation , 2001, Fuzzy Days.

[25]  Rimvydas Simutis,et al.  Bioprocess optimization and control: Application of hybrid modelling , 1994 .

[26]  Rui Oliveira,et al.  Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control , 2007, BMC Bioinformatics.

[27]  Dale E. Seborg,et al.  Feedback linearizing control , 1997 .

[28]  Peter A Vanrolleghem,et al.  Parallel hybrid modeling methods for a full-scale cokes wastewater treatment plant. , 2005, Journal of biotechnology.

[29]  Rimvydas Simutis,et al.  Hybrid process models for process optimisation, monitoring and control , 2004, Bioprocess and biosystems engineering.

[30]  P. Teissier,et al.  A hybrid recurrent neural network model for yeast production monitoring and control in a wine base medium , 1997 .

[31]  Elias Akkari,et al.  A 2D non-linear "grey-box" model dedicated to microwave thawing: Theoretical and experimental investigation , 2005, Comput. Chem. Eng..

[32]  János Abonyi,et al.  Semi-mechanistic Models for State-Estimation - Soft Sensor for Polymer Melt Index Prediction , 2004, ICAISC.

[33]  Ferenc Szeifert,et al.  New Approaches to the Identification of Semi-mechanistic Process Models , 2004 .

[34]  Andreas Schuppert,et al.  Efficient reengineering of meso-scale topologies for functional networks in biomedical applications , 2011 .

[35]  Rui Oliveira,et al.  Hybrid modeling of counterion mass transfer in a membrane-supported biofilm reactor , 2012 .

[36]  Wolfgang Marquardt,et al.  Experimental design for the identification of hybrid reaction models from transient data , 2008 .

[37]  Mark A. Kramer,et al.  Modeling chemical processes using prior knowledge and neural networks , 1994 .

[38]  Alfred Jean Philippe Lauret,et al.  Hybrid modelling of a sugar boiling process , 2000, 1212.5251.

[39]  Qihong Chen,et al.  Adaptive Neural Control Based on PEMFC Hybrid Modeling , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[40]  T. McAvoy,et al.  Use of Hybrid Models in Wastewater Systems , 2000 .

[41]  R. Pearson,et al.  Gray-box identification of block-oriented nonlinear models , 2000 .

[42]  Hector M Budman,et al.  Application of spectrofluorometry to the prediction of PHB concentrations in a fed-batch process , 2005, Bioprocess and biosystems engineering.

[43]  S. Feyo de Azevedo,et al.  Knowledge based modular networks for process modelling and control , 2001 .

[44]  Tegoeh Tjahjowidodo,et al.  Identification of pre-sliding and sliding friction dynamics: Grey box and black-box models , 2007 .

[45]  Andreas Schuppert,et al.  Application of Hybrid Models in Chemical Industry , 2002 .

[46]  Herbert J. A. F. Tulleken,et al.  Grey-box modelling and identification using physical knowledge and bayesian techniques , 1993, Autom..

[47]  Ferenc Szeifert,et al.  Hybrid convolution model and its application in predictive pH control , 1999 .

[48]  Wei-Kang Yuan,et al.  A hybrid neural network-first principles model for fixed-bed reactor , 1999 .

[49]  José Carlos Pinto,et al.  Control of a loop polymerization reactor using neural networks , 2000 .

[50]  S. Feyo de Azevedo,et al.  Bioprocess hybrid parametric/nonparametric modelling based on the concept of mixture of experts , 2008 .

[51]  Maurício Bezerra de Souza,et al.  A hybrid neural model (HNM) for the on-line monitoring of lipase production by Candida rugosa , 2007 .

[52]  Kun Soo Chang,et al.  Hybrid neural network approach in description and prediction of dynamic behavior of chaotic chemical reaction systems , 2000 .

[53]  J. Heijnen,et al.  Understanding and applying the extrapolation properties of serial gray-box models , 1998 .

[54]  Tor Arne Johansen,et al.  Nonlinear Local Model Representation For Adaptive Systems , 1992, Singapore International Conference on Intelligent Control and Instrumentation [Proceedings 1992].

[55]  Pratap R. Patnaik,et al.  Neural and Hybrid Optimizations of the Fed-Batch Synthesis of Poly-β-Hydroxybutyrate by Ralstonia eutropha in a Nonideal Bioreactor , 2008 .

[56]  Fernando Morgado Dias,et al.  Hybrid neuro-fuzzy network-priori knowledge model in temperature control of a gas water heater system , 2005, Fifth International Conference on Hybrid Intelligent Systems (HIS'05).

[57]  Ferenc Szeifert,et al.  Feedback linearizing control using hybrid neural networks identified by sensitivity approach , 2005, Eng. Appl. Artif. Intell..

[58]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[59]  Krist V. Gernaey,et al.  A perspective on PSE in pharmaceutical process development and innovation , 2012, Comput. Chem. Eng..

[60]  Rimvydas Simutis,et al.  Artificial Neural Networks of Improved Reliability for Industrial Process Supervision , 1995 .

[61]  E. Lima,et al.  Optimizatin of fed-batch processes: Challenges and solutions , 1999 .

[62]  Dakuo He,et al.  Batch-to-batch control of particle size distribution in cobalt oxalate synthesis process based on hybrid model , 2012 .

[63]  W. Härdle Nonparametric and Semiparametric Models , 2004 .

[64]  Katalin M. Hangos,et al.  Grey box modelling for control : qualitative models as a unifying framework , 1995 .

[65]  John P. Barford,et al.  A hybrid neural network—first principles approach for modelling of cell metabolism , 1996 .

[66]  Sebastião Feyo de Azevedo,et al.  A novel identification method for hybrid (N)PLS dynamical systems with application to bioprocesses , 2011, Expert Syst. Appl..

[67]  Alfonso Jaramillo,et al.  Asmparts: assembly of biological model parts , 2007, Systems and Synthetic Biology.

[68]  Rimvydas Simutis,et al.  Improving the batch-to-batch reproducibility of microbial cultures during recombinant protein production by regulation of the total carbon dioxide production. , 2007, Journal of biotechnology.

[69]  Xianfang Wang,et al.  Hybrid modeling of penicillin fermentation process based on least square support vector machine , 2010 .

[70]  Kon-Well Wang,et al.  A Hybrid Neural Network Approach for the Development of Friction Component Dynamic Model , 2004 .

[71]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[72]  P. A. Minderman,et al.  INTEGRATING NEURAL NETWORKS WITH FIRST PRINCIPLES MODELS FOR DYNAMIC MODELING , 1992 .

[73]  Carl-Fredrik Mandenius,et al.  Process analytical technology (PAT) for biopharmaceuticals , 2011, Biotechnology journal.

[74]  B. Saxén,et al.  A neural‐network based model of bioreaction kinetics , 1996 .

[75]  Eugeniusz Molga,et al.  Hybrid first-principle–neural-network approach to modelling of the liquid–liquid reacting system , 1999 .

[76]  Henk B. Verbruggen,et al.  Semi-mechanistic modeling of chemical processes with neural networks , 1998 .

[77]  R. Simutis,et al.  Product formation kinetics in genetically modified E. coli bacteria: inclusion body formation , 2008, Bioprocess and biosystems engineering.

[78]  Fernanda de Castilhos Corazza,et al.  DETERMINATION OF INHIBITION IN THE ENZYMATIC HYDROLYSIS OF CELLOBIOSE USING HYBRID NEURAL MODELING , 2005 .

[79]  Mohammed Al‐Yemni,et al.  Hybrid neural‐networks modeling of an enzymatic membrane reactor , 2005 .

[80]  R. Braatz,et al.  Integrated batch‐to‐batch and nonlinear model predictive control for polymorphic transformation in pharmaceutical crystallization , 2011 .

[81]  Bjarne A. Foss,et al.  Representing and Learning Unmodeled Dynamics with Neural Network Memories , 1992, 1992 American Control Conference.

[82]  J. A. Wilson,et al.  A generalised approach to process state estimation using hybrid artificial neural network/mechanistic models , 1997 .

[83]  Scott C. James,et al.  Comparative study of black-box and hybrid estimation methods in fed-batch fermentation , 2002 .

[84]  Feng Qian,et al.  Development of a Hybrid Model for Industrial Ethylene Oxide Reactor , 2012 .

[85]  Pratap R. Patnaik,et al.  Design Considerations in Hybrid Neural Optimization of Fed-Batch Fermentation for PHB Production by Ralstonia eutropha , 2010 .

[86]  Aline Carvalho da Costa,et al.  A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS , 1999 .

[87]  Petia Georgieva,et al.  Knowledge-based hybrid modelling of a batch crystallisation when accounting for nucleation, growth and agglomeration phenomena , 2003 .

[88]  Brian Roffel,et al.  Combining prior knowledge with data driven modeling of a batch distillation column including start-up , 2003, Comput. Chem. Eng..

[89]  Roberto Baratti,et al.  Monitoring of a CO oxidation reactor through a grey model-based EKF observer , 2000 .

[90]  R. Simutis,et al.  THE USE OF HYBRID MODELLING FOR THE OPTIMIZATION OF THE PENICILLIN FERMENTATION PROCESS , 1996 .

[91]  Ali Lohi,et al.  Hybrid modeling of ethylene to ethylene oxide heterogeneous reactor , 2011 .

[92]  Robert A. Lordo,et al.  Nonparametric and Semiparametric Models , 2005, Technometrics.

[93]  M. Kramer,et al.  Embedding Theoretical Models in Neural Networks , 1992, American Control Conference.

[94]  Jean-Luc Gouzé,et al.  Constrained Hybrid Neural Modelling of Biotechnological Processes , 2010 .

[95]  Venkat Venkatasubramanian,et al.  Population Balance Model-Based Hybrid Neural Network for a Pharmaceutical Milling Process , 2010, Journal of Pharmaceutical Innovation.

[96]  Sheng-Chi Wu,et al.  A hybrid model combining hydrodynamic and biological effects for production of bacterial cellulose with a pilot scale airlift reactor , 2006 .

[97]  A Delgado,et al.  Functional nodes in dynamic neural networks for bioprocess modelling , 2003, Bioprocess and biosystems engineering.

[98]  Andreas A. Schuppert,et al.  Extrapolability of structured hybrid models: a key to optimization of complex processes , 2000 .

[99]  Mukul Agarwal,et al.  Combining neural and conventional paradigms for modelling, prediction and control , 1997, Int. J. Syst. Sci..

[100]  Sebastião Feyo de Azevedo,et al.  On-line tuning of a neural PID controller based on plant hybrid modeling , 2004, Comput. Chem. Eng..

[101]  Wolfgang Marquardt,et al.  The validity domain of hybrid models and its application in process optimization , 2007 .

[102]  Reza Eslamloueyan,et al.  OPTIMIZATION OF FED-BATCH RECOMBINANT YEAST FERMENTATION FOR ETHANOL PRODUCTION USING A REDUCED DYNAMIC FLUX BALANCE MODEL BASED ON ARTIFICIAL NEURAL NETWORKS , 2011 .

[103]  Dexian Huang,et al.  Combining first principles with black-box techniques for reaction systems , 2000 .

[104]  Karel Ch. A. M. Luyben,et al.  Strategy for dynamic process modeling based on neural networks in macroscopic balances , 1996 .

[105]  Babu Joseph,et al.  Predictive control of quality in batch polymerization using hybrid ANN models , 1996 .

[107]  Damir Beluhan,et al.  Hybrid modeling approach to on-line estimation of yeast biomass concentration in industrial bioreactor , 2000, Biotechnology Letters.

[108]  Vahid Johari Majd,et al.  Feedback linearization of discrete-time nonlinear uncertain plants via first-principles-based serial neuro-gray-box models , 2003 .

[109]  Andreas Lübbert,et al.  Hybrid Process Modeling for Advanced Process State Estimation, Prediction, and Control Exemplified in a Production-Scale Mammalian Cell Culture , 1996 .

[110]  Enrique Luis Lima,et al.  Adaptive hybrid neural models for process control , 1998 .

[111]  Mark J. Willis,et al.  Hybrid approach to modeling an industrial polyethylene process , 2003 .

[112]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[113]  Sebastião Feyo de Azevedo,et al.  Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach , 2010, BMC Systems Biology.

[114]  Wolfgang Marquardt,et al.  Incremental identification of hybrid process models , 2008, Comput. Chem. Eng..

[115]  G. P. Rangaiah,et al.  First-Principles, Data-Based, and Hybrid Modeling and Optimization of an Industrial Hydrocracking Unit , 2006 .

[116]  P. Patnaik,et al.  An integrated hybrid neural system for noise filtering, simulation and control of a fed-batch recombinant fermentation☆ , 2003 .

[117]  Mohd Azlan Hussain,et al.  Control of a Batch Polymerization System Using Hybrid Neural Network - First Principle Model , 2008 .

[118]  Krist V. Gernaey,et al.  A model-based systems approach to pharmaceutical product-process design and analysis , 2010 .

[119]  S. Feyo de Azevedo,et al.  Knowledge based modular networks for process modelling and control , 2000 .

[120]  Kai Sundmacher,et al.  Designing Biological Systems: Systems Engineering meets Synthetic Biology , 2012 .

[121]  R G Silva,et al.  A hybrid neural network algorithm for on-line state inference that accounts for differences in inoculum of Cephalosporium acremonium in fed-batch fermentors. , 2001, Applied biochemistry and biotechnology.

[122]  Vincenza Calabrò,et al.  A hybrid neural approach to model batch fermentation of "ricotta cheese whey" to ethanol , 2010, Comput. Chem. Eng..

[123]  Akos Hevesi,et al.  A patahengert alkotó anatómiai képletek ábrázolási lehetőségei mágneses rezonancián /MR/ alapuló képalkotó eljárással (Metodikai közlemény) , 2004 .

[124]  Carl A. Schweiger,et al.  Plant-wide optimization of an ethanol plant using parametric hybrid models , 2010, 49th IEEE Conference on Decision and Control (CDC).

[125]  Bernold Fiedler,et al.  Local identification of scalar hybrid models with tree structure , 2008 .

[126]  Jose A. Romagnoli,et al.  A hybrid model formulation for a distillation column and the on-line optimisation study , 1999 .

[127]  Brian Roffel,et al.  A structured modeling approach for dynamic hybrid fuzzy-first principles models , 2002 .

[128]  W. Fred Ramirez,et al.  Dynamic hybrid neural network model of an industrial fed-batch fermentation process to produce foreign protein , 2007, Comput. Chem. Eng..

[129]  Yu-Lun Chiu,et al.  Dynamic modeling of batch polymerization reactors via the hybrid neural-network rate-function approach , 2007 .

[130]  Juergen Hahn,et al.  Nonlinear balanced model residualization via neural networks , 2002 .

[131]  H. Jorquera,et al.  A hybrid representation approach for modelling complex dynamic bioprocesses , 2000 .

[132]  Plamen Angelov,et al.  Hybrid modelling of biotechnological processes using neural networks , 1999 .

[133]  Rui Oliveira Combining first principles modelling and artificial neural networks: a general framework , 2004, Comput. Chem. Eng..

[134]  Francis J. Doyle,et al.  Hybrid model-based approach to batch-to-batch control of particle size distribution in emulsion polymerization , 2003, Comput. Chem. Eng..

[135]  M. P. Vega,et al.  Modeling and control of tubular solution polymerization reactors , 1997 .

[136]  Ian T. Cameron,et al.  Process Modelling and Model Analysis , 2013 .

[137]  R. Hanus,et al.  A new training method for hybrid models of bioprocesses , 1999 .

[138]  Rimvydas Simutis,et al.  How to increase the performance of models for process optimization and control , 1997 .

[139]  Philippe Bogaerts,et al.  Biological reaction modeling using radial basis function networks , 2004, Comput. Chem. Eng..

[140]  James D. McMillan,et al.  Interpolated parameter functions for neural network models , 2000 .

[141]  Enrique Luis Lima,et al.  Adaptive control using a hybrid-neural model: application to a polymerisation reactor , 2001 .

[142]  Nayef Ghasem,et al.  Advanced Control of a Fluidized Bed Using a Model-predictive Controller , 2009 .

[143]  Mohd Azlan Hussain,et al.  Hybrid neural network—prior knowledge model in temperature control of a semi-batch polymerization process , 2004 .

[144]  Sami F. Masri,et al.  A hybrid parametric/nonparametric approach for the identification of nonlinear systems , 1994 .

[145]  Ani Shabri,et al.  HYBRID MODEL , 2015 .

[146]  Rui Oliveira,et al.  Bioprocess Iterative Batch‐to‐Batch Optimization Based on Hybrid Parametric/Nonparametric Models , 2006, Biotechnology progress.

[147]  P Fu,et al.  Integration of mathematical modelling and knowledge-based systems for simulations of biochemical processes , 1995 .

[148]  Petia Georgieva,et al.  Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process , 2007 .

[149]  L. L. Simon,et al.  Modeling of a Three-Phase Industrial Batch Reactor Using a Hybrid First-Principles Neural-Network Model , 2006 .

[150]  Kun Soo Chang,et al.  Hybrid neural network modeling of a full-scale industrial wastewater treatment process. , 2002, Biotechnology and bioengineering.

[151]  Goksel Misirli,et al.  Standard virtual biological parts: a repository of modular modeling components for synthetic biology , 2010, Bioinform..

[152]  Ferenc Szeifert,et al.  Combining First Principles Models and Neural Networks for Generic Model Control , 2002 .

[153]  Vladimir Mahalec,et al.  Inferential monitoring and optimization of crude separation units via hybrid models , 2012, Comput. Chem. Eng..

[154]  R. Hinton,et al.  First principles. , 2016, The Pharos of Alpha Omega Alpha-Honor Medical Society. Alpha Omega Alpha.

[155]  Ian T. Cameron,et al.  Classification and analysis of integrating frameworks in multiscale modelling , 2004 .

[156]  Ana P. Teixeira,et al.  Hybrid semi-parametric mathematical systems: bridging the gap between systems biology and process engineering. , 2007, Journal of biotechnology.

[157]  Mohd Azlan Hussain,et al.  Adaptive linearizing control with neural-network-based hybrid models , 2001 .

[158]  Les Check,et al.  Fifth International Conference , 1978 .

[159]  Yuan Tian,et al.  Modeling and optimal control of a batch polymerization reactor using a hybrid stacked recurrent neural network model , 2001 .

[160]  P. R. Patnaik Hybrid neural simulation of a fed-batch bioreactor for a nonideal recombinant fermentation , 2001 .

[161]  M. von Stosch,et al.  Hybrid modeling framework for process analytical technology: Application to Bordetella pertussis cultures , 2012, Biotechnology progress.

[162]  Denis Dochain,et al.  State and parameter estimation in chemical and biochemical processes: a tutorial , 2003 .

[163]  Lyle H. Ungar,et al.  A hybrid neural network‐first principles approach to process modeling , 1992 .

[164]  Sebastião Feyo de Azevedo,et al.  A general hybrid semi-parametric process control framework , 2012 .

[165]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[166]  Igor Grabec,et al.  Empirical modeling of antibiotic fermentation process using neural networks and genetic algorithms , 1999 .

[167]  Aline Carvalho da Costa,et al.  An adaptive optimal control scheme based on hybrid neural modelling , 1998 .

[168]  Torsten Bohlin,et al.  Issues in Nonlinear Stochastic Grey-Box Identification , 1994 .

[169]  Raquel L. C. Giordano,et al.  A hybrid neuroal network algorithm for on-line state inference that accounts for differences in inoculum of Cephalosporium acremonium in fed-batch fermentors , 2001 .

[170]  Gary A. Montague,et al.  Modelling pressure drop in water treatment , 1997, Artif. Intell. Eng..

[171]  Rubens Maciel Filho,et al.  Neural network and hybrid model: a discussion about different modeling techniques to predict pulping degree with industrial data , 2001 .

[172]  Francisco A. Cubillos,et al.  Identification and optimizing control of a rougher flotation circuit using an adaptable hybrid-neural model , 1997 .

[173]  Björn Sohlberg,et al.  Hybrid grey box modelling of a pickling process , 2005 .

[174]  Eric Latrille,et al.  Application of artificial neural networks for crossflow microfiltration modelling: “black-box” and semi-physical approaches , 1997 .

[175]  Mohammed Al-Yemni Hybrid neural networks models for a membrane reactor , 2003 .

[176]  Rui Oliveira,et al.  Hybrid metabolic flux analysis: combining stoichiometric and statistical constraints to model the formation of complex recombinant products , 2011, BMC Systems Biology.

[177]  Casimir C. Klimasauskas,et al.  Hybrid modeling for robust nonlinear multivariable control , 1998 .

[178]  Sanjay Gupta,et al.  Hybrid first‐principles/neural networks model for column flotation , 1999 .

[179]  Wen-Teng Wu,et al.  Semi-realtime optimization and control of a fed-batch fermentation system , 2000 .

[180]  Fei Yang,et al.  Hybrid modeling for the prediction of leaching rate in leaching process based on negative correlation learning bagging ensemble algorithm , 2011, Comput. Chem. Eng..

[181]  Mark J. Willis,et al.  Evolving a hybrid model of a fed-batch fermentation process , 1998 .

[182]  Pratap R. Patnaik,et al.  Neural and Hybrid Neural Modeling and Control of Fed‐Batch Fermentation for Streptokinase: Comparative Evaluation under Nonideal Conditions , 2008 .

[183]  Rimvydas Simutis,et al.  Advanced Supervision of Mammalian Cell Cultures Using Hybrid Process Models , 1995 .

[184]  Antonio José Gonçalves Cruz,et al.  A hybrid feedforward neural network model for the cephalosporin C production process , 2000 .

[185]  George M. Bollas,et al.  Using hybrid neural networks in scaling up an FCC model from a pilot plant to an industrial unit , 2003 .

[186]  Rimvydas Simutis,et al.  Hybrid modelling of yeast production processes – combination of a priori knowledge on different levels of sophistication , 1994 .

[187]  Manuel R. Arahal,et al.  Serial grey-box model of a stratified thermal tank for hierarchical control of a solar plant , 2008 .

[188]  Cláudio Augusto Oller do Nascimento,et al.  Modeling of industrial nylon‐6,6 polymerization process in a twin‐screw extruder reactor. II. Neural networks and hybrid models , 1999 .

[189]  Arthur Jutan,et al.  Grey-box modelling and control of chemical processes , 2002 .