Computational prediction and experimental verification of pyridine-based helical oligoamides containing four repeating units per helical turn.

Aided by high level ab initio computational modeling, we successfully designed and experimentally proved a new set of backbone-rigidified pyridine-based folding oligoamides that require approximately four repeating units to form a helical turn.

[1]  H. Su,et al.  Highly selective one-pot synthesis of H-bonded pentagon-shaped circular aromatic pentamers. , 2011, Chemical communications.

[2]  P. Balaram,et al.  Structural chemistry of peptides containing backbone expanded amino acid residues: conformational features of β, γ, and hybrid peptides. , 2011, Chemical reviews.

[3]  H. Su,et al.  Persistently folded circular aromatic amide pentamers containing modularly tunable cation-binding cavities with high ion selectivity. , 2010, Journal of the American Chemical Society.

[4]  H. Su,et al.  Synthesis, structural investigations, hydrogen-deuterium exchange studies, and molecular modeling of conformationally stablilized aromatic oligoamides. , 2010, Journal of the American Chemical Society.

[5]  Zhan-Ting Li,et al.  Hydrogen bonded aryl amide and hydrazide oligomers: a new generation of preorganized soft frameworks. , 2010, Chemical communications.

[6]  A. Hamilton,et al.  Recent advances in the development of aryl-based foldamers. , 2009, Chemical Society reviews.

[7]  H. Su,et al.  Helical organization in foldable aromatic oligoamides by a continuous hydrogen-bonding network. , 2009, Organic letters.

[8]  A. Hamilton,et al.  Controlling curvature in a family of oligoamide alpha-helix mimetics. , 2008, Angewandte Chemie.

[9]  H. Su,et al.  Crystallographic evidence of an unusual, pentagon-shaped folding pattern in a circular aromatic pentamer. , 2008, Organic letters.

[10]  Dan Yang,et al.  Alpha-aminoxy acids: new possibilities from foldamers to anion receptors and channels. , 2008, Accounts of chemical research.

[11]  W Seth Horne,et al.  Foldamers with heterogeneous backbones. , 2008, Accounts of chemical research.

[12]  J. Yao,et al.  Pyridine-imide oligomers. , 2008, Chemical communications.

[13]  Zhan-Ting Li,et al.  Vesicles and organogels from foldamers: a solvent-modulated self-assembling process. , 2008, Journal of the American Chemical Society.

[14]  B. Gong,et al.  Hollow crescents, helices, and macrocycles from enforced folding and folding-assisted macrocyclization. , 2008, Accounts of chemical research.

[15]  A. Grélard,et al.  Quadruple and double helices of 8-fluoroquinoline oligoamides. , 2008, Angewandte Chemie.

[16]  S. Balasubramanian,et al.  Macrocyclic and helical oligoamides as a new class of G-quadruplex ligands. , 2007, Journal of the American Chemical Society.

[17]  J. Leger,et al.  Interstrand interactions between side chains in a double-helical foldamer. , 2006, Angewandte Chemie.

[18]  Bing Gong,et al.  Aromatic oligoureas: enforced folding and assisted cyclization. , 2006, Organic letters.

[19]  C. Tung,et al.  Helicity induction in hydrogen-bonding-driven zinc porphyrin foldamers by chiral C60-incorporating histidines. , 2006, Angewandte Chemie.

[20]  J. Leger,et al.  Probing helix propensity of monomers within a helical oligomer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Zhan-Ting Li,et al.  F...H-N hydrogen bonding driven foldamers: efficient receptors for dialkylammonium ions. , 2005, Angewandte Chemie.

[22]  Hitoshi Yamamoto,et al.  Linear-to-turn conformational switching induced by deprotonation of unsymmetrically linked phenolic oligoamides. , 2005, Angewandte Chemie.

[23]  E. W. Meijer,et al.  Facile synthesis of a chiral polymeric helix; folding by intramolecular hydrogen bonding. , 2004, Chemical communications.

[24]  Thomas Szyperski,et al.  Helical aromatic oligoamides: reliable, readily predictable folding from the combination of rigidified structural motifs. , 2004, Journal of the American Chemical Society.

[25]  Jun-Li Hou,et al.  Hydrogen bonded oligohydrazide foldamers and their recognition for saccharides. , 2004, Journal of the American Chemical Society.

[26]  R. P. Cheng,et al.  Beyond de novo protein design--de novo design of non-natural folded oligomers. , 2004, Current opinion in structural biology.

[27]  B. Gong,et al.  Backbone-rigidified oligo(m-phenylene ethynylenes). , 2004, Journal of the American Chemical Society.

[28]  Ivan Huc,et al.  Aromatic Oligoamide Foldamers , 2004 .

[29]  Jean-Marie Lehn,et al.  Contraction/extension molecular motion by protonation/deprotonation induced structural switching of pyridine derived oligoamides. , 2003, Chemical communications.

[30]  Carsten Schmuck,et al.  Molecules with helical structure: how to build a molecular spiral staircase. , 2003, Angewandte Chemie.

[31]  J. Leger,et al.  Aromatic δ-Peptides , 2003 .

[32]  Thomas Szyperski,et al.  Creating nanocavities of tunable sizes: Hollow helices , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Matthew J. Mio,et al.  A field guide to foldamers. , 2001, Chemical reviews.

[34]  B Gong,et al.  Crescent oligoamides: from acyclic "macrocycles" to folding nanotubes. , 2001, Chemistry.

[35]  T. J. Murray,et al.  Complexation-induced unfolding of heterocyclic ureas. Simple foldamers equilibrate with multiply hydrogen-bonded sheetlike structures. , 2001, Journal of the American Chemical Society.

[36]  J. Lehn,et al.  Helical molecular programming: supramolecular double helices by dimerization of helical oligopyridine-dicarboxamide strands. , 2001, Chemistry.

[37]  Ivan Huc,et al.  Interconversion of single and double helices formed from synthetic molecular strands , 2000, Nature.

[38]  Bing Gong,et al.  A new class of folding oligomers: Crescent oligoamides [4] , 2000 .

[39]  Samuel H. Gellman,et al.  Foldamers: A Manifesto , 1998 .

[40]  Y. Hamuro,et al.  Novel Folding Patterns in a Family of Oligoanthranilamides: Non-Peptide Oligomers That Form Extended Helical Secondary Structures , 1997 .

[41]  Y. Hamuro,et al.  Oligoanthranilamides. Non-Peptide Subunits That Show Formation of Specific Secondary Structure , 1996 .

[42]  Y. Hamuro,et al.  Novel Molecular Scaffolds: Formation of Helical Secondary Structure in a Family of Oligoanthranilamides , 1994 .