EELS and optical response of a noble metal nanoparticle in the frame of a discrete dipole approximation

Surface plasmons of noble metal nanoparticles have recently been studied by Electron Energy-Loss Spectroscopy (EELS) performed in an electron microscope. We present here the basic formalism for EELS simulations in a Discrete Dipole Approximation (DDA) framework for such surface excitations. We compare EELS data and optical properties of a silver triangular nanoprism and show that the spatial variation of surface plasmon excitation probabilities allows to discriminate modes of similar energies. We also emphasize the importance of the substrate polarization effect to reliably describe experimental data.

[1]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[2]  P. Lambin,et al.  Calculation of the energy loss for an electron passing near giant fullerenes , 1996 .

[3]  Ugarte,et al.  Surface- and interface-plasmon modes on small semiconducting spheres. , 1992, Physical review. B, Condensed matter.

[4]  R. Luebbers,et al.  The Finite Difference Time Domain Method for Electromagnetics , 1993 .

[5]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[6]  Younan Xia,et al.  Optical near-field mapping of plasmonic nanoprisms. , 2008, Nano letters.

[7]  S. Kawata,et al.  Subwavelength colour imaging with a metallic nanolens , 2008 .

[8]  P. Batson Surface Plasmon Coupling in Clusters of Small Spheres , 1982 .

[9]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[10]  M. L. Tiago,et al.  Electronic and optical excitations in Agn clusters (n=1―8): Comparison of density-functional and many-body theories , 2009 .

[11]  J. Silcox,et al.  Measurement of surface-plasmon dispersion in oxidized aluminum films , 1975 .

[12]  Alfons G. Hoekstra,et al.  The discrete dipole approximation: an overview and recent developments , 2007 .

[13]  Luis M. Liz-Marzán,et al.  Synthesis of Silver Nanoprisms in DMF , 2002 .

[14]  C T Koch,et al.  Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging. , 2009, Optics letters.

[15]  Bruce T. Draine,et al.  Beyond Clausius-Mossotti - Wave propagation on a polarizable point lattice and the discrete dipole approximation. [electromagnetic scattering and absorption by interstellar grains] , 1992 .

[16]  Moussa N'Gom,et al.  Single particle plasmon spectroscopy of silver nanowires and gold nanorods. , 2008, Nano letters.

[17]  B. Draine,et al.  User Guide for the Discrete Dipole Approximation Code DDSCAT (Version 5a10) , 2000, astro-ph/0008151.

[18]  L. Liz‐Marzán,et al.  Formation of Silver Nanoprisms with Surface Plasmons at Communication Wavelengths , 2006 .

[19]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[20]  F. G. D. Abajo,et al.  RELATIVISTIC ELECTRON ENERGY LOSS AND ELECTRON-INDUCED PHOTON EMISSION IN INHOMOGENEOUS DIELECTRICS , 1998 .

[21]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[22]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[23]  G. Schatz,et al.  Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes , 1995 .

[24]  Linyou Cao,et al.  Engineering light absorption in semiconductor nanowire devices. , 2009, Nature materials.

[25]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[26]  Paul Mulvaney,et al.  Influence of the Medium Refractive Index on the Optical Properties of Single Gold Triangular Prisms on a Substrate , 2008 .

[27]  F. J. García de abajo,et al.  Probing the photonic local density of states with electron energy loss spectroscopy. , 2007, Physical review letters.

[28]  Niels Verellen,et al.  Fano resonances in individual coherent plasmonic nanocavities. , 2009, Nano letters.

[29]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[30]  M. Lannoo,et al.  Calculations of the electron-energy-loss spectra of silicon nanostructures and porous silicon , 1997 .

[31]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[32]  P. Nordlander,et al.  Effects of dielectric screening on the optical properties of metallic nanoshells , 2003 .

[33]  Peter Nordlander,et al.  Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles , 2007 .

[34]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[35]  P. Echenique,et al.  Excitation of dielectric spheres by external electron beams , 1987 .

[36]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[37]  Tim Hopkins,et al.  The Parallel Iterative Methods (PIM) package for the solution of systems of linear equations on para , 1995 .

[38]  Bruce T. Draine,et al.  The discrete-dipole approximation and its application to interstellar graphite grains , 1988 .

[39]  M. Ratner,et al.  Multipolar excitation in triangular nanoprisms. , 2005, The Journal of chemical physics.

[40]  R. V. Van Duyne,et al.  Solution-phase, triangular ag nanotriangles fabricated by nanosphere lithography. , 2005, The journal of physical chemistry. B.

[41]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[42]  A. Rivacoba,et al.  Electron energy loss in carbon nanostructures , 2002, cond-mat/0210242.

[43]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.