Medulloblastoma stem cells: where development and cancer cross pathways

[1]  X. Wang,et al.  Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells , 2012, Oncogene.

[2]  Y. Taché,et al.  Editorial , 2011, Peptides.

[3]  J. Mesirov,et al.  Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[4]  L. Di Marcotullio,et al.  Identification and characterization of KCASH2 and KCASH3, 2 novel Cullin3 adaptors suppressing histone deacetylase and Hedgehog activity in medulloblastoma. , 2011, Neoplasia.

[5]  L. Denaro,et al.  Interaction of Hypoxia‐Inducible Factor‐1α and Notch Signaling Regulates Medulloblastoma Precursor Proliferation and Fate , 2010, Stem cells.

[6]  Chi-Hung Huang,et al.  Bmi1 is essential in Twist1-induced epithelial–mesenchymal transition , 2010, Nature Cell Biology.

[7]  P. Liberski,et al.  Polycomb genes expression as a predictor of poor clinical outcome in children with medulloblastoma , 2010, Child's Nervous System.

[8]  Mauro Biffoni,et al.  Hedgehog controls neural stem cells through p53‐independent regulation of Nanog , 2010, The EMBO journal.

[9]  David W. Ellison,et al.  Childhood medulloblastoma: novel approaches to the classification of a heterogeneous disease , 2010, Acta Neuropathologica.

[10]  F. Zindy,et al.  Atoh1 inhibits neuronal differentiation and collaborates with Gli1 to generate medulloblastoma-initiating cells. , 2010, Cancer research.

[11]  B. Wainwright,et al.  Canonical Notch signaling is not required for the growth of Hedgehog pathway-induced medulloblastoma , 2010, Oncogene.

[12]  Hongkai Ji,et al.  Hedgehog pathway-regulated gene networks in cerebellum development and tumorigenesis , 2010, Proceedings of the National Academy of Sciences.

[13]  F. Heppner,et al.  Cerebellar stem cells act as medulloblastoma-initiating cells in a mouse model and a neural stem cell signature characterizes a subset of human medulloblastomas , 2010, Oncogene.

[14]  L. Vitagliano,et al.  Histone deacetylase and Cullin3–RENKCTD11 ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation , 2010, Nature Cell Biology.

[15]  Huda Y Zoghbi,et al.  Deletion of Atoh1 Disrupts Sonic Hedgehog Signaling in the Developing Cerebellum and Prevents Medulloblastoma , 2009, Science.

[16]  K. Graham,et al.  Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. , 2009, Cancer research.

[17]  Emmanuel Barillot,et al.  Beta‐catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics , 2009, The Journal of pathology.

[18]  P. Northcott,et al.  MicroRNA-199b-5p Impairs Cancer Stem Cells through Negative Regulation of HES1 in Medulloblastoma , 2009, PloS one.

[19]  John T. Dimos,et al.  Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. , 2009, Genes & development.

[20]  P. Febbo,et al.  Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. , 2009, Cancer cell.

[21]  D. Ellison,et al.  Bmi1 is required for Hedgehog pathway-driven medulloblastoma expansion. , 2008, Neoplasia.

[22]  Dirk Troost,et al.  Integrated Genomics Identifies Five Medulloblastoma Subtypes with Distinct Genetic Profiles, Pathway Signatures and Clinicopathological Features , 2008, PloS one.

[23]  Robert Machold,et al.  Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. , 2008, Cancer cell.

[24]  Tao Sun,et al.  Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. , 2008, Cancer cell.

[25]  P. Pandolfi,et al.  PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. , 2008, Genes & development.

[26]  M. Chintagumpala,et al.  FOXG1 dysregulation is a frequent event in medulloblastoma , 2007, Journal of Neuro-Oncology.

[27]  D. Ellison,et al.  Wnt/Wingless Pathway Activation and Chromosome 6 Loss Characterise a Distinct Molecular Sub-Group of Medulloblastomas Associated with a Favourable Prognosis , 2006, Cell cycle.

[28]  Irving L Weissman,et al.  Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. , 2006, Cancer research.

[29]  D. Stearns,et al.  Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. , 2006, Cancer research.

[30]  T. Curran,et al.  Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[31]  C. Englund,et al.  Development of the Deep Cerebellar Nuclei: Transcription Factors and Cell Migration from the Rhombic Lip , 2006, The Journal of Neuroscience.

[32]  Claire L Weston,et al.  beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children's Cancer Study Group Brain Tumour Committee. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[33]  H. Zoghbi,et al.  Math1 Expression Redefines the Rhombic Lip Derivatives and Reveals Novel Lineages within the Brainstem and Cerebellum , 2005, Neuron.

[34]  A. Ruiz i Altaba,et al.  Brain as a paradigm of organ growth: Hedgehog-Gli signaling in neural stem cells and brain tumors. , 2005, Journal of neurobiology.

[35]  Y. Arsenijévic,et al.  Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. , 2005, Genes & development.

[36]  G. Glinsky,et al.  Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. , 2005, The Journal of clinical investigation.

[37]  W. Huttner,et al.  Isolation of neural stem cells from the postnatal cerebellum , 2005, Nature Neuroscience.

[38]  J. Kessler,et al.  Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma , 2005, Development.

[39]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[40]  G. Finocchiaro,et al.  Expression of MATH1, a marker of cerebellar granule cell progenitors, identifies different medulloblastoma sub-types , 2004, Neuroscience Letters.

[41]  Arie Perry,et al.  Notch1 and Notch2 Have Opposite Effects on Embryonal Brain Tumor Growth , 2004, Cancer Research.

[42]  Joel I. Pritchard,et al.  The SmoA1 Mouse Model Reveals That Notch Signaling Is Critical for the Growth and Survival of Sonic Hedgehog-Induced Medulloblastomas , 2004, Cancer Research.

[43]  M. Lohuizen,et al.  Stem Cells and Cancer The Polycomb Connection , 2004, Cell.

[44]  C. Sotelo,et al.  Cellular and genetic regulation of the development of the cerebellar system , 2004, Progress in Neurobiology.

[45]  R. Gilbertson,et al.  Medulloblastoma: signalling a change in treatment. , 2004, The Lancet. Oncology.

[46]  M. Lohuizen,et al.  Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas , 2004, Nature.

[47]  Isaac S Kohane,et al.  Conserved mechanisms across development and tumorigenesis revealed by a mouse development perspective of human cancers. , 2004, Genes & development.

[48]  Daniel H. Geschwind,et al.  Cancerous stem cells can arise from pediatric brain tumors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Cynthia Hawkins,et al.  Identification of a cancer stem cell in human brain tumors. , 2003, Cancer research.

[50]  Heather L. Miller,et al.  A molecular fingerprint for medulloblastoma. , 2003, Cancer research.

[51]  P. Kleihues,et al.  AXIN1 mutations but not deletions in cerebellar medulloblastomas , 2003, Oncogene.

[52]  Michael D. Cole,et al.  Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors , 2003, Development.

[53]  T. Poggio,et al.  Prediction of central nervous system embryonal tumour outcome based on gene expression , 2002, Nature.

[54]  Huda Y. Zoghbi,et al.  Genetic regulation of cerebellar development , 2001, Nature Reviews Neuroscience.

[55]  I. Weissman,et al.  Direct isolation of human central nervous system stem cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[56]  P. Burger,et al.  Nuclear Localization and Mutation of β‐Catenin in Medulloblastomas , 2000 .

[57]  Y. Yonekawa,et al.  APC mutations in sporadic medulloblastomas. , 2000, The American journal of pathology.

[58]  M. Scott,et al.  Altered neural cell fates and medulloblastoma in mouse patched mutants. , 1997, Science.

[59]  C. James,et al.  Sporadic medulloblastomas contain PTCH mutations. , 1997, Cancer research.

[60]  Michael Dean,et al.  Mutations of the Human Homolog of Drosophila patched in the Nevoid Basal Cell Carcinoma Syndrome , 1996, Cell.

[61]  S. Weiss,et al.  Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. , 1996, Developmental biology.

[62]  H Sugimura,et al.  Predominant expression of human zic in cerebellar granule cell lineage and medulloblastoma. , 1996, Cancer research.

[63]  K. Kinzler,et al.  The molecular basis of Turcot's syndrome. , 1995, The New England journal of medicine.

[64]  U. Lendahl,et al.  Expression of the class VI intermediate filament nestin in human central nervous system tumors. , 1992, Cancer research.

[65]  M. Greene,et al.  Developmental defects in gorlin syndrome related to a putative tumor suppressor gene on chromosome 9 , 1992, Cell.

[66]  S. Weiss,et al.  Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. , 1992, Science.

[67]  Mario R. Capecchi,et al.  Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development , 1990, Nature.

[68]  R. McKay,et al.  CNS stem cells express a new class of intermediate filament protein , 1990, Cell.

[69]  P. Bailey,et al.  MEDULLOBLASTOMA CEREBELLI: A COMMON TYPE OF MIDCEREBELLAR GLIOMA OF CHILDHOOD , 1925 .

[70]  J. H. Wright NEUROCYTOMA OR NEUROBLASTOMA, A KIND OF TUMOR NOT GENERALLY RECOGNIZED , 1910, The Journal of experimental medicine.

[71]  J. Cohnheim Ueber Entzündung und Eiterung , 1867, Archiv für pathologische Anatomie und Physiologie und für klinische Medicin.

[72]  D. Grzybicki,et al.  Subtypes of medulloblastoma have distinct developmental origins , 2012 .

[73]  J. Uhm Medulloblastoma Comprises Four Distinct Molecular Variants , 2011 .

[74]  T. Pierfelice,et al.  Notch, neural stem cells, and brain tumors. , 2008, Cold Spring Harbor symposia on quantitative biology.

[75]  G. Fishell,et al.  Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development , 2006 .

[76]  H. Clevers Wnt/beta-catenin signaling in development and disease. , 2006, Cell.

[77]  T. Kumanishi,et al.  Glial fibrillary acidic protein in medulloblastomas , 2004, Acta Neuropathologica.

[78]  David Hogg,et al.  Mutations in SUFU predispose to medulloblastoma , 2002, Nature Genetics.

[79]  P. Burger,et al.  Nuclear localization and mutation of beta-catenin in medulloblastomas. , 2000, Journal of neuropathology and experimental neurology.

[80]  M. Scott,et al.  Control of Neuronal Precursor Proliferation in the Cerebellum by Sonic Hedgehog , 1999, Neuron.

[81]  P. Burger,et al.  Calbindin-D28k in subsets of medulloblastomas and in the human medulloblastoma cell line D283 Med. , 1995, Archives of pathology & laboratory medicine.