Proof-of-principle experiment for laser-driven cold neutron source

[1]  K. Spohr,et al.  Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory , 2019, Matter and Radiation at Extremes.

[2]  M. Roth,et al.  Laser based neutron spectroscopy , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[3]  K. Zhu,et al.  Experimental demonstration of a laser proton accelerator with accurate beam control through image-relaying transport , 2019, Physical Review Accelerators and Beams.

[4]  J. Carpenter The development of compact neutron sources , 2019, Nature Reviews Physics.

[5]  Alyson J. Lumley,et al.  Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect , 2018, Nature Communications.

[6]  J. Dawidowski,et al.  Procedure for the determination of effective temperatures employing VESUVIO spectrometer , 2018, Journal of Physics: Conference Series.

[7]  D Neely,et al.  Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme , 2018, Nature Communications.

[8]  Takuya Furuta,et al.  Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02 , 2018 .

[9]  N. M. H. Butler,et al.  Experimental demonstration of a compact epithermal neutron source based on a high power laser , 2017 .

[10]  E. S. Fulkerson,et al.  All diode-pumped, high-repetition-rate advanced petawatt laser system (HAPLS) , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[11]  P. Norreys,et al.  High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets , 2017 .

[12]  P. Staron,et al.  Neutrons and synchrotron radiation in engineering materials science : from fundamentals to applications , 2017 .

[13]  S. V. Bulanov,et al.  Boosting laser-ion acceleration with multi-picosecond pulses , 2017, Scientific Reports.

[14]  G. Festa,et al.  Research opportunities with compact accelerator-driven neutron sources , 2016 .

[15]  O. Willi,et al.  Beamed neutron emission driven by laser accelerated light ions , 2015, 1507.04511.

[16]  P. Norreys,et al.  Calibration of time of flight detectors using laser-driven neutron source. , 2015, The Review of scientific instruments.

[17]  Mariastefania De Vido,et al.  A solid state 100 mJ diode pumped temporally and spatially shaped front end system for seeding a 10 Hz 100 J laser system , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[18]  B. Gibson,et al.  Stellar origin of the 182Hf cosmochronometer and the presolar history of solar system matter , 2014, Science.

[19]  N. Zamfir Nuclear Physics with 10 PW laser beams at Extreme Light Infrastructure – Nuclear Physics (ELI-NP) , 2014 .

[20]  J. Krása,et al.  Generation of high-energy neutrons with the 300-ps-laser system PALS , 2014, High Power Laser Science and Engineering.

[21]  Andrea Favalli,et al.  Bright laser-driven neutron source based on the relativistic transparency of solids. , 2013, Physical review letters.

[22]  J. Mcnaney,et al.  Generation of high-energy (>15 MeV) neutrons using short pulse high intensity lasers , 2012 .

[23]  D Neely,et al.  Ion acceleration in multispecies targets driven by intense laser radiation pressure. , 2012, Physical review letters.

[24]  A. Plompen,et al.  Quasi-stellar neutrons from the 7Li( p,n)7Be reaction with an energy-broadened proton beam , 2012 .

[25]  A. Pietropaolo,et al.  Electron volt neutron spectrometers , 2011 .

[26]  J. Frenje,et al.  Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions , 2011 .

[27]  E. Lehmann,et al.  Imaging with cold neutrons , 2011 .

[28]  D. Neely,et al.  Ballistic focusing of polyenergetic protons driven by petawatt laser pulses. , 2011, Physical review letters.

[29]  K. Tanaka,et al.  Laser generated neutron source for neutron resonance spectroscopy , 2010 .

[30]  T. Ditmire High energy density science with high peak power light sources , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[31]  H. Daido,et al.  Focusing and spectral enhancement of a repetition-rated, laser-driven, divergent multi-MeV proton beam using permanent quadrupole magnets , 2009 .

[32]  Wolfgang Sandner,et al.  First demonstration of collimation and monochromatisation of a laser accelerated proton burst , 2008 .

[33]  U Schramm,et al.  Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices. , 2008, Physical review letters.

[34]  W. Reimers,et al.  Neutrons and synchrotron radiation in engineering materials science : from fundamentals to material and component characterization , 2008 .

[35]  Hiroshi Azechi,et al.  10-kJ PW laser for the FIREX-I program , 2006 .

[36]  Patrick Audebert,et al.  Ultrafast Laser-Driven Microlens to Focus and Energy-Select Mega-Electron Volt Protons , 2006, Science.

[37]  K.-U. Amthor,et al.  Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets , 2006, Nature.

[38]  P. Audebert,et al.  Laser-driven proton scaling laws and new paths towards energy increase , 2006 .

[39]  S. Imberti,et al.  Resolution of the VESUVIO spectrometer for High-energy inelastic Neutron Scattering experiments , 2005 .

[40]  S. Parker,et al.  Vibrational Spectroscopy with Neutrons - With Applications in Chemistry, Biology, Materials Science and Catalysis , 2005 .

[41]  Edward B. Clark,et al.  Characterization of 7Li(p,n)7Be neutron yields from laser produced ion beams for fast neutron radiography , 2004 .

[42]  T. C. Sangster,et al.  Intense high-energy proton beams from Petawatt-laser irradiation of solids. , 2000, Physical review letters.

[43]  Gu,et al.  Forward ion acceleration in thin films driven by a high-intensity laser , 2000, Physical review letters.

[44]  Deanna M. Pennington,et al.  Energetic proton generation in ultra-intense laser–solid interactions , 2000 .

[45]  Edward B. Clark,et al.  Comment on "measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids". , 2000 .

[46]  T. E. Cowan,et al.  Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters , 1999, Nature.

[47]  M. Hawthorne New horizons for therapy based on the boron neutron capture reaction. , 1998, Molecular medicine today.

[48]  P. Norreys,et al.  Twenty-fold increase in thermonuclear reaction yield in laser driven compression , 1989 .

[49]  M. Furusaka,et al.  The Time-of-Flight Small-Angle Scattering Spectrometer SAN at the KENS Pulsed Cold Neutron Source , 1986 .

[50]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[51]  Kazuhiko Inoue,et al.  An accelerator-based cold neutron source , 1982 .

[52]  S. Whittlestone Neutron distributions from the deuteron bombardment of a thick beryllium target , 1977 .

[53]  K. Kawachi,et al.  Neutrons from Thick Target Beryllium (d, n) Reactions at 1.0 MeV to 3.0 MeV , 1968 .

[54]  J. CHADWICK,et al.  Possible Existence of a Neutron , 1932, Nature.

[55]  S. Parker Vibrational Spectroscopy with Neutrons , 2019, Encyclopedia of Biophysics.

[56]  David Neely,et al.  Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators , 2015 .

[57]  G. Tang,et al.  Neutron Yields of Thick Be Target Bombarded with Low Energy Deuterons , 2014 .

[58]  H. B. Liu,et al.  Boron neutron-capture therapy (BNCT) for glioblastoma multiforme (GBM) using the epithermal neutron beam at the Brookhaven National Laboratory. , 1998, International journal of radiation oncology, biology, physics.

[59]  A. Belushkin IBR-2 – the fast pulsed reactor at Dubna , 1991 .