Capacity bounds for the three-dimensional (0, 1) run length limited channel

The capacity C/sub 0,1//sup (8)/ of a three-dimensional (0,1) run length constrained channel is shown to satisfy 0.522501741838/spl les/C/sub 0,1//sup (8)//spl les/0.526880847825.

[1]  T. Raghavan,et al.  Nonnegative Matrices and Applications , 1997 .

[2]  Jørn Justesen,et al.  Entropy Bounds for Constrained Two-Dimensional Random Fields , 1999, IEEE Trans. Inf. Theory.

[3]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[4]  J. Wolf,et al.  Bit-stuffing bounds on the capacity of 2-dimensional constrained arrays , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[5]  R. Blahut,et al.  The capacity and coding gain of certain checkerboard codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[6]  Paul H. Siegel,et al.  Codes for Digital Recorders , 1998, IEEE Trans. Inf. Theory.

[7]  Kenneth Zeger,et al.  On the capacity of two-dimensional run-length constrained channels , 1999, IEEE Trans. Inf. Theory.

[8]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[9]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[10]  Herbert S. Wilf,et al.  The Number of Independent Sets in a Grid Graph , 1998, SIAM J. Discret. Math..