Probabilistic LCF Risk Evaluation of a Turbine Vane by Combined Size Effect and Notch Support Modeling
暂无分享,去创建一个
[1] Joachim Rösler,et al. Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers, and Composites , 2007 .
[2] O. Basquin. The exponential law of endurance tests , 1910 .
[3] Michael Vormwald,et al. Ermüdungsfestigkeit Grundlagen für Ingenieure , 2007 .
[4] Hanno Gottschalk,et al. A probabilistic model for LCF , 2013, 1308.5842.
[5] Thomas Seibel,et al. Einfluss der Probengröße und der Kornorientierung auf die Lebensdauer einer polykristallinen Ni-Basislegierung bei LCF-Beanspruchung , 2014 .
[6] Sebastian Schmitz,et al. Risk estimation for LCF crack initiation , 2013, 1302.2909.
[7] Stefano Beretta,et al. Fatigue Assessment of Tubular Automotive Components in Presence of Inhomogeneities , 2004 .
[8] Oluwamayowa Okeyoyin,et al. Application of Weakest Link Probabilistic Framework for Fatigue Notch Factor to Aero Engine Materials , 2013 .
[9] L. Coffin,et al. A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal , 1954, Journal of Fluids Engineering.
[10] B. Fedelich. A stochastic theory for the problem of multiple surface crack coalescence , 1998 .
[11] Hanno Gottschalk,et al. Probabilistic Analysis of LCF Crack Initiation Life of a Turbine Blade under Thermomechanical Loading , 2013 .
[12] Michael Vormwald,et al. Statistical and geometrical size effects in notched members based on weakest-link and short-crack modelling , 2012 .