Evolutionary Tuning of Optimal Controllers for Complex Systems

The Proportional Integral Derivative controller is the most widely used industrial device for monitoring and controlling processes. Although there are alternatives to the traditional rules of tuning, there is not yet a study showing that the use of heuristic algorithms it is indeed better than using the classic methods of optimal tuning. Current trends in controller parameter estimation minimize an integral performance criterion. In this paper, an evolutionary algorithm (MAGO - Multidynamics Algorithm for Global Optimization) is used as a tool to optimize the controller parameters minimizing the ITAE (Integral of Time multiplied by Absolut Error) performance index. The procedure is applied to a set of standard plants modelled as a Second Order System Plus Time Delay (SOSPD). Operating on servo and regulator modes and regardless the plant used, the evolutionary approach gets a better overall performance comparing to traditional methods (Bohl and McAvoy, Minimum ITAE-Hassan, Minimum ITAE-Sung). The solutions obtained cover all restrictions and extends the maximum and minimum boundaries between them.

[1]  James F. Whidborne,et al.  Optimised configuration of sensors for fault tolerant control of an electro-magnetic suspension system , 2012, Int. J. Syst. Sci..

[2]  Xinjie Yu,et al.  Introduction to evolutionary algorithms , 2010, The 40th International Conference on Computers & Indutrial Engineering.

[3]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[4]  Jesús-Antonio Hernández-Riveros,et al.  Multi-criteria decision and multi-objective optimization for constructing and selecting models for systems identification , 2013 .

[5]  Peter J. Fleming,et al.  Evolutionary algorithms in control systems engineering: a survey , 2002 .

[6]  Jesús-Antonio Hernández-Riveros,et al.  Sensitivity Analysis of an Autonomous Evolutionary Algorithm , 2012, IBERAMIA.

[7]  Jamaluddin Hishamuddin,et al.  Implementation of PID controller tuning using differential evolution and genetic algorithms , 2012 .

[8]  W. Chang,et al.  Optimum setting of PID controllers based on using evolutionary programming algorithm , 2004 .

[9]  Aidan O'Dwyer,et al.  Handbook of PI and PID controller tuning rules , 2003 .

[10]  Tore Hägglund,et al.  Benchmark systems for PID control , 2000 .

[11]  Saeed Tavakoli,et al.  Multi-objective optimization approach to the PI tuning problem , 2007, 2007 IEEE Congress on Evolutionary Computation.

[12]  Mao Jianlin,et al.  Evolutionary algorithms based parameters tuning of PID controller , 2011, 2011 Chinese Control and Decision Conference (CCDC).

[13]  Su Whan Sung,et al.  Automatic Tuning of PID Controller Using Second-Order Plus Time Delay Model , 1996 .

[14]  D. McLean Optimal Control. Systems & Control: Foundations & Applications series R. Vinter Birkhauser Verlag, Viaduktstrasse 42, CH-4051 Basel, Switzerland. 2000. 507pp. CHF 138.S ISBN 0-8176-4075-4. , 2001 .

[15]  S. Daley,et al.  Optimal-Tuning PID Control for Industrial Systems , 2000 .

[16]  Fred Spiring,et al.  Introduction to Statistical Quality Control , 2007, Technometrics.

[17]  Intan Zaurah Mat Darus,et al.  PID controller tuning using evolutionary algorithms , 2012 .

[18]  S. Baskar,et al.  Evolutionary algorithms based design of multivariable PID controller , 2009, Expert Syst. Appl..

[19]  J. A. Hernández,et al.  A multi dynamics algorithm for global optimization , 2010, Math. Comput. Model..

[20]  Alberto Herreros,et al.  Design of PID-type controllers using multiobjective genetic algorithms. , 2002, ISA transactions.

[21]  Thomas J. McAvoy,et al.  Linear Feedback vs. Time Optima Control. II. The Regulator Problem , 1976 .

[22]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[23]  Kiam Heong Ang,et al.  PID control system analysis and design , 2006, IEEE Control Systems.

[24]  Zbigniew Skolicki,et al.  The influence of migration sizes and intervals on island models , 2005, GECCO '05.

[25]  L. Darrell Whitley,et al.  An overview of evolutionary algorithms: practical issues and common pitfalls , 2001, Inf. Softw. Technol..