The uses of genome-wide yeast mutant collections

[1]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[2]  A. Chu,et al.  Use of a Genome-Wide Approach to Identify New Genes that Control Resistance of Saccharomyces cerevisiae to Ionizing Radiation , 2003, Radiation research.

[3]  K. Ito,et al.  Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae , 2001, Molecular Genetics and Genomics.

[4]  P. Ahlquist,et al.  Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Gerhard G. Thallinger,et al.  YPL.db: the Yeast Protein Localization database , 2002, Nucleic Acids Res..

[6]  André Goffeau,et al.  The yeast genome directory. , 1997, Nature.

[7]  Hongyue Dai,et al.  Widespread aneuploidy revealed by DNA microarray expression profiling , 2000, Nature Genetics.

[8]  Michael Hampsey,et al.  A Review of Phenotypes in Saccharomyces cerevisiae , 1997, Yeast.

[9]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[10]  L. Mir,et al.  Isolation and characterization of Saccharomyces cerevisiae mutants with enhanced resistance to the anticancer drug bleomycin , 2004, Current Genetics.

[11]  S. Avery,et al.  Genome-Wide Screening of Saccharomyces cerevisiae To Identify Genes Required for Antibiotic Insusceptibility of Eukaryotes , 2003, Antimicrobial Agents and Chemotherapy.

[12]  J. Bonifacino,et al.  Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. , 2002, Molecular biology of the cell.

[13]  J. Boeke,et al.  A DNA Microarray-Based Genetic Screen for Nonhomologous End-Joining Mutants in Saccharomyces cerevisiae , 2001, Science.

[14]  Kei-Hoi Cheung,et al.  The TRIPLES database: a community resource for yeast molecular biology , 2002, Nucleic Acids Res..

[15]  Seth Sadis,et al.  Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Circe W. Tsui,et al.  Functional genomics reveals relationships between the retrovirus-like Ty1 element and its host Saccharomyces cerevisiae. , 2003, Genetics.

[17]  W. Saunders,et al.  Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. , 2003, Genetics.

[18]  Michael I. Jordan,et al.  Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Ronald W. Davis,et al.  Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[21]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[22]  Elizabeth A. Winzeler,et al.  Large-scale mutagenesis and functional genomics in yeast , 2002, Functional & Integrative Genomics.

[23]  A. Goffeau Four years of post‐genomic life with 6000 yeast genes , 2000, FEBS letters.

[24]  Y. Kashiwagi,et al.  Screening and characterization of transposon‐insertion mutants in a pseudohyphal strain of Saccharomyces cerevisiae , 2003, Yeast.

[25]  Susan Lindquist,et al.  Yeast Genes That Enhance the Toxicity of a Mutant Huntingtin Fragment or α-Synuclein , 2003, Science.

[26]  Anders Blomberg,et al.  High-resolution yeast phenomics resolves different physiological features in the saline response , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Charles Boone,et al.  A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Johnston,et al.  Large‐scale screening of yeast mutants for sensitivity to the IMP dehydrogenase inhibitor 6‐azauracil , 2004, Yeast.

[29]  S. Lindquist,et al.  Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. , 2003, Science.

[30]  Mike Tyers,et al.  Systematic Identification of Pathways That Couple Cell Growth and Division in Yeast , 2002, Science.

[31]  Kei-Hoi Cheung,et al.  An integrated approach for finding overlooked genes in yeast , 2002, Nature Biotechnology.

[32]  V. Blanc,et al.  Evolution in Saccharomyces cerevisiae: identification of mutations increasing fitness in laboratory populations. , 2003, Genetics.

[33]  E. Winzeler,et al.  Treasures and traps in genome-wide data sets: case examples from yeast , 2002, Nature Reviews Genetics.

[34]  H. van Attikum,et al.  Insertional mutagenesis in yeasts using T‐DNA from Agrobacterium tumefaciens , 2002, Yeast.

[35]  Ronald W. Davis,et al.  Systematic screen for human disease genes in yeast , 2002, Nature Genetics.

[36]  M. Johnston,et al.  A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  S. Hohmann,et al.  Transposon mutagenesis reveals novel loci affecting tolerance to salt stress and growth at low temperature , 2001, Current Genetics.

[38]  J. Boeke,et al.  DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray , 2003, Nature Genetics.

[39]  M. Snyder,et al.  Emerging technologies in yeast genomics , 2001, Nature Reviews Genetics.

[40]  Ronald W. Davis,et al.  A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Bolotin-Fukuhara,et al.  In vivo functional characterization of a yeast nucleotide sequence: construction of a mini-Mu derivative adapted to yeast. , 1988, Gene.

[42]  M. Snyder,et al.  A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. , 2001, Molecular biology of the cell.

[43]  M. Peter,et al.  A Genome-Wide Screen in Saccharomyces cerevisiae Reveals Altered Transport As a Mechanism of Resistance to the Anticancer Drug Bleomycin , 2004, Cancer Research.

[44]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[45]  Yi Xing,et al.  Novel functions of the phosphatidylinositol metabolic pathway discovered by a chemical genomics screen with wortmannin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  P. Roach,et al.  Systematic Identification of the Genes Affecting Glycogen Storage in the Yeast Saccharomyces cerevisiae , 2002, Molecular & Cellular Proteomics.

[47]  C. Ball,et al.  Saccharomyces Genome Database. , 2002, Methods in enzymology.

[48]  P. Manivasakam,et al.  Promoter-trapping in Saccharomyces cerevisiae by radiation-assisted fragment insertion. , 2002, Nucleic acids research.

[49]  H. Bussey,et al.  A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. , 2003, Genetics.

[50]  Jian Zhang,et al.  Genomic Scale Mutant Hunt Identifies Cell Size Homeostasis Genes in S. cerevisiae , 2002, Current Biology.

[51]  Mike Tyers,et al.  High-resolution genetic mapping with ordered arrays of Saccharomyces cerevisiae deletion mutants. , 2002, Genetics.

[52]  Elizabeth A. Winzeler,et al.  Genomic profiling of drug sensitivities via induced haploinsufficiency , 1999, Nature Genetics.

[53]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[54]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[55]  Kei-Hoi Cheung,et al.  Large-scale analysis of the yeast genome by transposon tagging and gene disruption , 1999, Nature.

[56]  Ronald W Davis,et al.  Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Shinichi Morishita,et al.  SCMD: Saccharomyces cerevisiae Morphological Database , 2004, Nucleic Acids Res..

[58]  A. Nicolas,et al.  A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[59]  M. Parrish,et al.  Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis , 2003, Yeast.

[60]  M. Resnick,et al.  Genes required for ionizing radiation resistance in yeast , 2001, Nature Genetics.

[61]  Angelika Amon,et al.  A Genome-Wide Screen Identifies Genes Required for Centromeric Cohesion , 2004, Science.

[62]  M. Snyder,et al.  Large-scale identification of genes important for apical growth in Saccharomyces cerevisiae by directed allele replacement technology (DART) screening , 2002, Functional & Integrative Genomics.