An O(m log n) algorithm for branching bisimilarity on labelled transition systems
暂无分享,去创建一个
[1] Scott A. Smolka,et al. CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.
[2] Simona Orzan,et al. Distributed Branching Bisimulation Reduction of State Spaces , 2003, Electron. Notes Theor. Comput. Sci..
[3] Jan Friso Groote,et al. An O(m\log n) Algorithm for Stuttering Equivalence and Branching Bisimulation , 2016, TACAS.
[4] Rocco De Nicola,et al. Three logics for branching bisimulation , 1995, JACM.
[5] Antti Valmari. Bisimilarity Minimization in O(m logn) Time , 2009, Petri Nets.
[6] John E. Hopcroft,et al. An n log n algorithm for minimizing states in a finite automaton , 1971 .
[7] Antti Valmari,et al. Efficient Minimization of DFAs with Partial Transition , 2008, STACS.
[8] Michel A. Reniers,et al. Results on Embeddings Between State-Based and Event-Based Systems , 2014, Comput. J..
[9] Cees T. A. M. de Laat,et al. A Medium-Scale Distributed System for Computer Science Research: Infrastructure for the Long Term , 2016, Computer.
[10] Erik P. de Vink,et al. The mCRL2 Toolset for Analysing Concurrent Systems - Improvements in Expressivity and Usability , 2019, TACAS.
[11] Robert E. Tarjan,et al. Three Partition Refinement Algorithms , 1987, SIAM J. Comput..
[12] Rob J. van Glabbeek,et al. The Linear Time - Branching Time Spectrum II , 1993, CONCUR.
[13] Jan Friso Groote,et al. A simpler O(m log n) algorithm for branching bisimilarity on labelled transition systems , 2019 .
[14] Richard M. Brugger. A Note on Unbiased Estimation of the Standard Deviation , 1969 .
[15] Scott A. Smolka,et al. CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.
[16] Jan Friso Groote,et al. An O(mlogn) Algorithm for Computing Stuttering Equivalence and Branching Bisimulation , 2017, ACM Trans. Comput. Log..
[17] Robin Milner,et al. A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.
[18] Jan Friso Groote,et al. An Efficient Algorithm for Branching Bisimulation and Stuttering Equivalence , 1990, ICALP.
[19] Antti Valmari,et al. Efficient Minimization of DFAs with Partial Transition Functions , 2008, STACS.
[20] Thomas A. Henzinger,et al. Computing simulations on finite and infinite graphs , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.
[21] Bas Luttik,et al. Modelling and Analysing ERTMS Hybrid Level 3 with the mCRL2 Toolset , 2018, FMICS.
[22] Rob J. van Glabbeek,et al. Branching time and abstraction in bisimulation semantics , 1996, JACM.