Supercritical Fluid-assisted Fabrication of Pt-modified Cerium Oxide Nanozyme Based on Polymer Nanoreactors for Peroxidase-like and Glucose Detection Characteristics

[1]  Aizheng Chen,et al.  Supercritical fluid-assisted fabrication of C-doped Co3O4 nanoparticles based on polymer-coated metal salt nanoreactors for efficient enzyme-mimicking and glucose sensor properties , 2023, Nano Research.

[2]  L. Benyahia,et al.  Reactive precipitation of vaterite calcium carbonate microspheres in supercritical carbon dioxide-water dispersion by microfluidics , 2022, The Journal of Supercritical Fluids.

[3]  Aizheng Chen,et al.  Preparation of astragaloside IV (AS-IV) nanoparticles via SAS process for anticancer efficacy: optimization based on Box-Behnken Design , 2022, The Journal of Supercritical Fluids.

[4]  Victor Aredo,et al.  Hydrolysed collagen as carrier material for particle formation via supercritical CO2 impregnation , 2022, The Journal of Supercritical Fluids.

[5]  K. Ryan,et al.  Production of Biopharmaceutical Dried-Powders using Supercritical CO2 Technology , 2022, The Journal of Supercritical Fluids.

[6]  Hang Wei,et al.  Effect of CeO2 morphology on the catalytic properties of Au/CeO2 for base-free glucose oxidation , 2022, Catalysis Science & Technology.

[7]  Sirong Li,et al.  Nanozyme-Enabled Analytical Chemistry. , 2021, Analytical chemistry.

[8]  Aizheng Chen,et al.  Role of supercritical carbon dioxide (scCO2) in fabrication of inorganic-based materials: a green and unique route , 2021, Science and technology of advanced materials.

[9]  Aizheng Chen,et al.  Supercritical-derived artemisinin microfibers and microparticles for improving anticancer effects , 2021 .

[10]  F. Gao,et al.  Highly efficient Pt catalyst on newly designed CeO2-ZrO2-Al2O3 support for catalytic removal of pollutants from vehicle exhaust , 2021 .

[11]  Chengzhou Zhu,et al.  Defect-Engineered Nanozyme-Linked Receptors. , 2021, Small.

[12]  Aizheng Chen,et al.  Supercritical Fluid (SCF)-assisted Fabrication of Carrier-free drugs: An Eco-friendly Welcome to Active Pharmaceutical Ingredients (APIs). , 2021, Advanced drug delivery reviews.

[13]  Qinghua Zhang,et al.  Matching the kinetics of natural enzymes with a single-atom iron nanozyme , 2021, Nature Catalysis.

[14]  Qiue Cao,et al.  Tailoring the Reactive Oxygen Species in Mesoporous NiO for Selectivity-Controlled Aerobic Oxidation of 5-Hydroxymethylfurfural on a Loaded Pt Catalyst , 2021 .

[15]  Chengzhou Zhu,et al.  Nanozyme-involved biomimetic cascade catalysis for biomedical applications , 2021 .

[16]  M. Johnsson,et al.  Electrocatalytic Glycerol Oxidation with Concurrent Hydrogen Evolution Utilizing an Efficient MoOx /Pt Catalyst. , 2020, Small.

[17]  Xinhua Wei,et al.  Supercritical fluid-assisted fabrication of diselenide-bridged polymeric composites for improved indocyanine green-guided photodynamic therapy , 2020 .

[18]  Xiaohao Liu,et al.  Insights into the Influence of CeO2 Crystal Facet on CO2 Hydrogenation to Methanol over Pd/CeO2 Catalysts , 2020 .

[19]  Aizheng Chen,et al.  Supercritical antisolvent process-assisted fabrication of chrysin-polyvinylpyrrolidone sub-microparticles for improved anticancer efficiency , 2020 .

[20]  Chih-Ching Huang,et al.  A review on metal nanozyme-based sensing of heavy metal ions: Challenges and future perspectives. , 2020, Journal of hazardous materials.

[21]  Aizheng Chen,et al.  Sub-micronization of disulfiram and disulfiram-copper complexes by Rapid expansion of supercritical solution toward augmented anticancer effect , 2020 .

[22]  Shi-Bin Wang,et al.  Supercritical carbon dioxide-assisted nanonization of dihydromyricetin for anticancer and bacterial biofilm inhibition efficacies , 2020 .

[23]  Y. S. Zhang,et al.  Gambogic acid augments black phosphorus quantum dots (BPQDs)-based synergistic chemo-photothermal therapy through downregulating heat shock protein expression , 2020 .

[24]  Yanfen Wen,et al.  Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene , 2020, Nano Research.

[25]  Zhiyu Wang,et al.  Multilevel Hollow MXene Tailored Low‐Pt Catalyst for Efficient Hydrogen Evolution in Full‐pH Range and Seawater , 2020, Advanced Functional Materials.

[26]  A. Basso,et al.  Industrial applications of immobilized enzymes—A review , 2019 .

[27]  Wei Long,et al.  A Nanozyme-Based Bandage with Single-Atom Catalysis for Brain Trauma. , 2019, ACS nano.

[28]  Aizheng Chen,et al.  Solubility measurement and RESOLV-assisted nanonization of gambogic acid in supercritical carbon dioxide for cancer therapy , 2019, The Journal of Supercritical Fluids.

[29]  Aizheng Chen,et al.  Carbon‐Doped Metal Oxide Nanoparticles Prepared from Metal Nitrates in Supercritical CO2‐Enabled Polymer Nanoreactors , 2019, Particle & Particle Systems Characterization.

[30]  Wei Xiao,et al.  Sensitive colorimetric detection of ascorbic acid using Pt/CeO2 nanocomposites as peroxidase mimics , 2019, Applied Surface Science.

[31]  Shi-Bin Wang,et al.  Supercritical Fluid-Assisted Fabrication of Manganese (III) Oxide Hollow Nanozymes Mediated by Polymer Nanoreactors for Efficient Glucose Sensing Characteristics. , 2019, ACS applied materials & interfaces.

[32]  Wei Luo,et al.  Ordered mesoporous CoO/CeO2 heterostructures with highly crystallized walls and enhanced peroxidase-like bioactivity , 2019, Applied Materials Today.

[33]  Sen Zhang,et al.  Ru/CeO2 Catalyst with Optimized CeO2 Support Morphology and Surface Facets for Propane Combustion. , 2019, Environmental science & technology.

[34]  X. Qu,et al.  Construction of Nanozyme‐Hydrogel for Enhanced Capture and Elimination of Bacteria , 2019, Advanced Functional Materials.

[35]  F. Yubero,et al.  XPS primary excitation spectra of Zn 2p, Fe 2p, and Ce 3d from ZnO, α‐Fe2O3, and CeO2 , 2018, Surface and Interface Analysis.

[36]  A. Karyakin,et al.  Catalytically Synthesized Prussian Blue Nanoparticles Defeating Natural Enzyme Peroxidase. , 2018, Journal of the American Chemical Society.

[37]  Xiao Zhang,et al.  Peroxidase-like activity of MoS2 nanoflakes with different modifications and their application for H2O2 and glucose detection. , 2018, Journal of materials chemistry. B.

[38]  Yanbing Yang,et al.  Peroxidase-Mimicking Nanozyme with Enhanced Activity and High Stability Based on Metal-Support Interactions. , 2018, Chemistry.

[39]  Shu-xing Li,et al.  Molecular Interactions of a DNA Modifying Enzyme APOBEC3F Catalytic Domain with a Single-Stranded DNA. , 2018, Journal of molecular biology.

[40]  Abolfazl Akbarzadeh,et al.  Nanozyme applications in biology and medicine: an overview , 2017, Artificial cells, nanomedicine, and biotechnology.

[41]  A. Nafady,et al.  Co3O4@CeO2 hybrid flower-like microspheres: a strong synergistic peroxidase-mimicking artificial enzyme with high sensitivity for glucose detection. , 2017, Journal of materials chemistry. B.

[42]  R. Shukla,et al.  Fe-doped CeO2 nanorods for enhanced peroxidase-like activity and their application towards glucose detection. , 2016, Journal of materials chemistry. B.

[43]  M. Graille,et al.  Insights into molecular plasticity in protein complexes from Trm9-Trm112 tRNA modifying enzyme crystal structure , 2015, Nucleic acids research.

[44]  Xi Chen,et al.  Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose. , 2015, Analytica chimica acta.

[45]  Hui Zhao,et al.  Highly dispersed CeO₂ on TiO₂ nanotube: a synergistic nanocomposite with superior peroxidase-like activity. , 2015, ACS applied materials & interfaces.

[46]  Sujie Chang,et al.  Morphology Effect of CeO2 Support in the Preparation, Metal–Support Interaction, and Catalytic Performance of Pt/CeO2 Catalysts , 2013 .

[47]  Huzhi Zheng,et al.  Co3O4-reduced graphene oxide nanocomposite as an effective peroxidase mimetic and its application in visual biosensing of glucose. , 2013, Analytica chimica acta.

[48]  J. Mcauliffe,et al.  Industrial use of immobilized enzymes. , 2013, Chemical Society reviews.

[49]  E. Wang,et al.  Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. , 2013, Chemical Society reviews.

[50]  Ling Zhang,et al.  Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. , 2013, Analytica chimica acta.

[51]  R. Webster,et al.  Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis. , 2012, Nanoscale.

[52]  Yadong Li,et al.  Nanokristalle mit wohldefinierten Kristallflächen für die Katalyse , 2012 .

[53]  Yadong Li,et al.  Catalysis based on nanocrystals with well-defined facets. , 2012, Angewandte Chemie.

[54]  Hyuck Jung,et al.  Enzymatic glucose biosensor based on CeO2 nanorods synthesized by non-isothermal precipitation. , 2012, Biosensors & bioelectronics.

[55]  R. V. Duyne,et al.  Wulff construction for alloy nanoparticles. , 2011, Nano letters.

[56]  X. Qu,et al.  Multicolor luminescent carbon nanoparticles: Synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications , 2011 .

[57]  B. Dkhil,et al.  Catalytic Activity of Carbon-Supported Pt Nanoelectrocatalysts. Why Reducing the Size of Pt Nanoparticles is Not Always Beneficial , 2011 .

[58]  S. Seal,et al.  Redox-active radical scavenging nanomaterials. , 2010, Chemical Society reviews.

[59]  J. Bertrán,et al.  Computational design of biological catalysts. , 2008, Chemical Society reviews.

[60]  Enza Torino,et al.  Nanoparticles production by supercritical antisolvent precipitation: A general interpretation , 2007 .

[61]  Yu Zhang,et al.  Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. , 2007, Nature nanotechnology.

[62]  Q. Xin,et al.  CuO/CeO2 catalysts: Redox features and catalytic behaviors , 2005 .

[63]  Avelino Corma,et al.  Hierarchically mesostructured doped CeO2 with potential for solar-cell use , 2004, Nature materials.

[64]  M. Flytzani-Stephanopoulos,et al.  Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts , 2003, Science.

[65]  Krzysztof Matyjaszewski,et al.  Synthesis of Nanocomposite Organic/Inorganic Hybrid Materials Using Controlled/“Living” Radical Polymerization , 2001 .

[66]  J. P. Holgado,et al.  Study of CeO2 XPS spectra by factor analysis : reduction of CeO2 , 2000 .

[67]  G. Wulff,et al.  XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen , 1901 .