In situ characterization of thermophysical soil properties—Measurements and monitoring of soil water content with a thermal probe

In a period of surging energy prices, resource depletion, and concerns over the use of nuclear power, energy savings are paramount and a major component of ongoing sustainable development. Geothermal energy is the energy stored in the form of heat beneath the surface of the Earth. Related to this, the thermal properties of soils are of great importance, particularly with regard to the modern trends of utilizing the subsurface for transmission of either heated fluids or high power currents. For example, in geothermal hydrology or geotechnical engineering applications, the thermal conductivity must be determined to assess the energy potential of the soil. The presence of water (groundwater, rainfall, natural moisture) improves both the thermal conductivity and thermal capacity fields. We present an original method—based on a thermal study and the use of non-integer order models—to determine the thermophysical parameters of different soils in near-surface layers, and link them to the water content variations...

[1]  H. Thomas,et al.  Measured and simulated heat transfer to foundation soils , 2009 .

[2]  Lyesse Laloui,et al.  Advanced Compact Device for the In-situ Determination of Geothermal Characteristics of Soils , 2008 .

[3]  Gary Phetteplace Geothermal Heat Pumps , 2007 .

[4]  Hangseok Choi,et al.  Evaluation of thermal performance of energy textile installed in Tunnel , 2012 .

[5]  C. Moyne,et al.  Approche expérimentale et théorique de la conductivité thermique des milieux poreux humides. I: Expérimentation , 1988 .

[6]  K. Lim,et al.  An experimental study on the thermal performance of ground heat exchanger , 2007 .

[7]  Mortaza Yari,et al.  Performance assessment of a horizontal‐coil geothermal heat pump , 2007 .

[8]  H. Brandl Energy foundations and other thermo-active ground structures , 2006 .

[9]  Jean-Paul Laurent,et al.  Evaluation des paramétres thermiques d'un milieu poreux: optimisation d'outils de mesure “in situ” , 1989 .

[10]  A. Oustaloup,et al.  Utilisation de modèles d'identification non entiers pour la résolution de problèmes inverses en conduction , 2000 .

[11]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[12]  Alexis Chauchois,et al.  Use of noninteger identification models for monitoring soil water content , 2003 .

[13]  Mirko Komatina,et al.  Sustainable sub-geothermal heat pump heating in Serbia , 2011 .

[14]  A Aittomäki,et al.  Effect of soil type and moisture content on ground heat pump performance , 1998 .

[15]  Didier Defer,et al.  Random pseudo promptings applied to the thermal characterization of a wet porous material , 1999 .

[16]  S. N. Azam-Ali,et al.  Can the PR1 capacitance probe replace the neutron probe for routine soil‐water measurement? , 2005 .

[17]  Abdelmalek Bouazza,et al.  Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia , 2010 .

[18]  Didier Defer,et al.  Characterisation of the thermal effusivity of a partially saturated soil by the inverse method in the frequency domain , 2003 .

[19]  Arif Hepbasli,et al.  Performance evaluation of a vertical ground‐source heat pump system in Izmir, Turkey , 2002 .

[20]  D. Vries Thermal properties of soils , 1963 .

[21]  Z. Fang,et al.  Heat transfer in ground heat exchangers with groundwater advection , 2004 .

[22]  Arif Hepbasli,et al.  Experimental study of a closed loop vertical ground source heat pump system , 2003 .

[23]  H. Thomas,et al.  Ground heat transfer effects on the thermal performance of earth-contact structures , 2000 .