Web-based Structural Identifiability Analyzer

Parameter identifiability describes whether, for a given differential model, one can determine parameter values from model equations. Knowing global or local identifiability properties allows construction of better practical experiments to identify parameters from experimental data. In this work, we present a web-based software tool that allows to answer specific identifiability queries. Concretely, our toolbox can determine identifiability of individual parameters of the model and also provide all functions of parameters that are identifiable (also called identifiable combinations) from single or multiple experiments. The program is freely available at https://maple.cloud/app/6509768948056064.

[1]  Ali Kalami Yazdi,et al.  COMBOS2: an algorithm to the input–output equations of dynamic biosystems via Gaussian elimination , 2020 .

[2]  Alejandro Fernández Villaverde,et al.  Observability and Structural Identifiability of Nonlinear Biological Systems , 2018, Complex..

[3]  Eva Balsa-Canto,et al.  GenSSI 2.0: multi-experiment structural identifiability analysis of SBML models , 2017, Bioinform..

[4]  K R Godfrey,et al.  Effect of dose, molecular size, affinity, and protein binding on tumor uptake of antibody or ligand: a biomathematical model. , 1989, Cancer research.

[5]  Maria Pia Saccomani,et al.  Parameter identifiability of nonlinear systems: the role of initial conditions , 2003, Autom..

[6]  Maria Pia Saccomani,et al.  A New Version of DAISY to Test Structural Identifiability of Biological Models , 2019, CMSB.

[7]  Herschel Rabitz,et al.  Identifiability and distinguishability of first-order reaction systems , 1988 .

[8]  Computing all identifiable functions for ODE models , 2020, ArXiv.

[9]  Bruno Lara,et al.  Parameter Estimation of Some Epidemic Models. The Case of Recurrent Epidemics Caused by Respiratory Syncytial Virus , 2009, Bulletin of mathematical biology.

[10]  Carsten Conradi,et al.  Dynamics of Posttranslational Modification Systems: Recent Progress and Future Directions. , 2017, Biophysical journal.

[11]  Maria Pia Saccomani,et al.  DAISY: A new software tool to test global identifiability of biological and physiological systems , 2007, Comput. Methods Programs Biomed..

[12]  Maria Pia Saccomani,et al.  Examples of testing global identifiability of biological and biomedical models with the DAISY software , 2010, Comput. Biol. Medicine.

[13]  Chee-Keng Yap,et al.  SIAN: software for structural identifiability analysis of ODE models , 2018, Bioinform..

[14]  Gleb Pogudin,et al.  Global Identifiability of Differential Models , 2018, Communications on Pure and Applied Mathematics.

[15]  Eva Balsa-Canto,et al.  Bioinformatics Applications Note Systems Biology Genssi: a Software Toolbox for Structural Identifiability Analysis of Biological Models , 2022 .

[16]  Antonis Papachristodoulou,et al.  Structural Identifiability of Dynamic Systems Biology Models , 2016, PLoS Comput. Biol..

[17]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[18]  Nicolette Meshkat,et al.  On Finding and Using Identifiable Parameter Combinations in Nonlinear Dynamic Systems Biology Models and COMBOS: A Novel Web Implementation , 2014, PloS one.

[19]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[20]  Xiaohua Xia,et al.  On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics , 2011, SIAM Rev..

[21]  Johan Karlsson,et al.  Comparison of approaches for parameter identifiability analysis of biological systems , 2014, Bioinform..