Probabilistic Common Spatial Patterns for Multichannel EEG Analysis

Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-temporal modeling framework that subsumes the CSP and regularized CSP algorithms. The proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We derive statistical inference algorithms that can alleviate the issue of local optima. In particular, an efficient algorithm based on eigendecomposition is developed for maximum a posteriori (MAP) estimation in the case of isotropic noise. For more general cases, a variational algorithm is developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically determining the model size. The two proposed algorithms are validated on a simulated data set. Their practical efficacy is also demonstrated by successful applications to single-trial classifications of three motor imagery EEG data sets and by the spatio-temporal pattern analysis of one EEG data set recorded in a Stroop color naming task.

[1]  Klaus-Robert Müller,et al.  Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms , 2004, IEEE Transactions on Biomedical Engineering.

[2]  Saeid Sanei,et al.  EEG signal processing , 2000, Clinical Neurophysiology.

[3]  Benjamin Blankertz,et al.  MATHEMATICAL ENGINEERING TECHNICAL REPORTS Spectrally weighted Common Spatial Pattern algorithm for single trial EEG classification , 2006 .

[4]  Bhaskar D. Rao,et al.  Variational EM Algorithms for Non-Gaussian Latent Variable Models , 2005, NIPS.

[5]  Jouko Lampinen,et al.  Hierarchical Bayesian estimates of distributed MEG sources: Theoretical aspects and comparison of variational and MCMC methods , 2007, NeuroImage.

[6]  K. Kreutz-Delgado,et al.  A General Approach to Sparse Basis Selection : Majorization , Concavity , and Affine Scaling — — — — — – , 1997 .

[7]  Moritz Grosse-Wentrup,et al.  Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI , 2011, Comput. Intell. Neurosci..

[8]  Clemens Brunner,et al.  Nonstationary Brain Source Separation for Multiclass Motor Imagery , 2010, IEEE Transactions on Biomedical Engineering.

[9]  Moritz Grosse-Wentrup,et al.  Multiclass Common Spatial Patterns and Information Theoretic Feature Extraction , 2008, IEEE Transactions on Biomedical Engineering.

[10]  E. John,et al.  Electroencephalography: Basic Principles and Applications , 2001 .

[11]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[12]  Toshihisa Tanaka,et al.  Simultaneous Design of FIR Filter Banks and Spatial Patterns for EEG Signal Classification , 2013, IEEE Transactions on Biomedical Engineering.

[13]  Haiping Lu,et al.  Regularized Common Spatial Pattern With Aggregation for EEG Classification in Small-Sample Setting , 2010, IEEE Transactions on Biomedical Engineering.

[14]  Wei Wu,et al.  A hierarchical Bayesian approach for learning sparse spatio-temporal decompositions of multichannel EEG , 2011, NeuroImage.

[15]  Motoaki Kawanabe,et al.  Robust Common Spatial Filters with a Maxmin Approach , 2014, Neural Computation.

[16]  Srikantan S. Nagarajan,et al.  Iterative Reweighted l1 and l2 Methods for Finding Sparse Solution , 2016 .

[17]  Keinosuke Fukunaga,et al.  Application of the Karhunen-Loève Expansion to Feature Selection and Ordering , 1970, IEEE Trans. Computers.

[18]  Cuntai Guan,et al.  Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms , 2011, IEEE Transactions on Biomedical Engineering.

[19]  Stefan Haufe,et al.  Single-trial analysis and classification of ERP components — A tutorial , 2011, NeuroImage.

[20]  Seungjin Choi,et al.  Composite Common Spatial Pattern for Subject-to-Subject Transfer , 2009, IEEE Signal Processing Letters.

[21]  David P. Wipf,et al.  Variational Bayesian Inference Techniques , 2010, IEEE Signal Processing Magazine.

[22]  Motoaki Kawanabe,et al.  Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing , 2007, NIPS.

[23]  David Barber,et al.  Bayesian Time Series Models , 2011 .

[24]  Cuntai Guan,et al.  Optimizing Spatial Filters by Minimizing Within-Class Dissimilarities in Electroencephalogram-Based Brain–Computer Interface , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[25]  Wei Wu,et al.  Classifying Single-Trial EEG During Motor Imagery by Iterative Spatio-Spectral Patterns Learning (ISSPL) , 2008, IEEE Transactions on Biomedical Engineering.

[26]  Qin Tang,et al.  L1-Norm-Based Common Spatial Patterns , 2012, IEEE Transactions on Biomedical Engineering.

[27]  D. F. Andrews,et al.  Scale Mixtures of Normal Distributions , 1974 .

[28]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[29]  Emery N. Brown,et al.  A probabilistic framework for learning robust common spatial patterns , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[30]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[31]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[32]  G. Pfurtscheller,et al.  The BCI competition III: validating alternative approaches to actual BCI problems , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[33]  Klaus-Robert Müller,et al.  The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials , 2004, IEEE Transactions on Biomedical Engineering.

[34]  Richard E. Turner,et al.  Two problems with variational expectation maximisation for time-series models , 2011 .

[35]  Bernhard Schölkopf,et al.  Classifying Event-Related Desynchronization in EEG, ECoG and MEG Signals , 2006, DAGM-Symposium.

[36]  Ad Aertsen,et al.  Review of the BCI Competition IV , 2012, Front. Neurosci..

[37]  Xiaorong Gao,et al.  One-Versus-the-Rest(OVR) Algorithm: An Extension of Common Spatial Patterns(CSP) Algorithm to Multi-class Case , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[38]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[39]  Cuntai Guan,et al.  Optimum Spatio-Spectral Filtering Network for Brain–Computer Interface , 2011, IEEE Transactions on Neural Networks.

[40]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[41]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[42]  Motoaki Kawanabe,et al.  Stationary common spatial patterns for brain–computer interfacing , 2012, Journal of neural engineering.

[43]  Lester W. Mackey,et al.  Deflation Methods for Sparse PCA , 2008, NIPS.

[44]  Dinh-Tuan Pham,et al.  Blind separation of instantaneous mixtures of nonstationary sources , 2001, IEEE Trans. Signal Process..

[45]  B. Baars,et al.  Cognition, Brain, and Consciousness: Introduction to Cognitive Neuroscience , 2007 .

[46]  Katherine Gradidge,et al.  Cognition, Brain and Consciousness: Introduction to cognitive neurosciences , 2012 .

[47]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.

[48]  K. Fernow New York , 1896, American Potato Journal.

[49]  A. Enis Çetin,et al.  Sparse spatial filter via a novel objective function minimization with smooth ℓ1 regularization , 2013, Biomed. Signal Process. Control..

[50]  Bhaskar D. Rao,et al.  Latent Variable Bayesian Models for Promoting Sparsity , 2011, IEEE Transactions on Information Theory.

[51]  Heung-Il Suk,et al.  A Novel Bayesian Framework for Discriminative Feature Extraction in Brain-Computer Interfaces , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Liqing Zhang,et al.  Multilinear generalization of Common Spatial Pattern , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[53]  W. Klimesch,et al.  The Electrophysiological Dynamics of Interference during the Stroop Task , 2008, Journal of Cognitive Neuroscience.

[54]  Clemens Brunner,et al.  Nonstationary Brain Source Separation for Multiclass Motor Imagery , 2010, IEEE Transactions on Biomedical Engineering.

[55]  Yuanqing Li,et al.  An Extended EM Algorithm for Joint Feature Extraction and Classification in Brain-Computer Interfaces , 2006, Neural Computation.

[56]  Lucas C. Parra,et al.  Blind Source Separation via Generalized Eigenvalue Decomposition , 2003, J. Mach. Learn. Res..

[57]  K.-R. Muller,et al.  Optimizing Spatial filters for Robust EEG Single-Trial Analysis , 2008, IEEE Signal Processing Magazine.

[58]  Terence Sim,et al.  Discriminant Subspace Analysis: A Fukunaga-Koontz Approach , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Gary E. Birch,et al.  Sparse spatial filter optimization for EEG channel reduction in brain-computer interface , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[60]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[61]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[62]  Klaus-Robert Müller,et al.  Combined Optimization of Spatial and Temporal Filters for Improving Brain-Computer Interfacing , 2006, IEEE Transactions on Biomedical Engineering.

[63]  Motoaki Kawanabe,et al.  Robust Spatial Filtering with Beta Divergence , 2013, NIPS.

[64]  Klaus-Robert Müller,et al.  Spatio-spectral filters for improving the classification of single trial EEG , 2005, IEEE Transactions on Biomedical Engineering.

[65]  Selina Wriessnegger,et al.  Regularised CSP for Sensor Selection in BCI , 2006 .

[66]  Xiaoming Huo A statistical analysis of Fukunaga-Koontz transform , 2004, IEEE Signal Processing Letters.

[67]  Michael S. Lazar,et al.  Spatial patterns underlying population differences in the background EEG , 2005, Brain Topography.