MetaRibo-Seq measures translation in microbiomes

No method exists to measure large-scale translation of genes in uncultured organisms in microbiomes. To overcome this limitation, we develop MetaRibo-Seq, a method for simultaneous ribosome profiling of tens to hundreds of organisms in microbiome samples. MetaRibo-Seq was benchmarked against gold-standard Ribo-Seq in a mock microbial community and applied to five different human fecal samples. Unlike RNA-Seq, Ribo-Seq signal of a predicted gene suggests it encodes a translated protein. We demonstrate two applications of this technique: First, MetaRibo-Seq identifies small genes, whose identification until now has been challenging. For example, MetaRibo-Seq identifies 2,091 translated, previously unannotated small protein families from five fecal samples, more than doubling the number of small proteins predicted to exist in this niche. Second, the combined application of RNA-Seq and MetaRibo-Seq identifies differences in the translation of transcripts. In summary, MetaRibo-Seq enables comprehensive translational profiling in microbiomes and identifies previously unannotated small proteins. Defining the functions of individual organisms or communities within microbiomes is a challenging task. Here, the authors develop MetaRibo-Seq, a method for simultaneous high-throughput ribosome profiling of organisms in uncultured microbiome samples.

[1]  Gene-Wei Li,et al.  The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria , 2012, Nature.

[2]  Kohske Takahashi,et al.  Create Elegant Data Visualisations Using the Grammar of Graphics [R package ggplot2 version 3.3.2] , 2020 .

[3]  Niklas Krumm,et al.  One Codex: A Sensitive and Accurate Data Platform for Genomic Microbial Identification , 2015, bioRxiv.

[4]  F. Vandenesch,et al.  High Genetic Variability of the agr Locus in Staphylococcus Species , 2002, Journal of bacteriology.

[5]  J. Klassen Defining microbiome function , 2018, Nature Microbiology.

[6]  Gerben Menschaert,et al.  Combining in silico prediction and ribosome profiling in a genome-wide search for novel putatively coding sORFs , 2013, BMC Genomics.

[7]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[8]  Gene-Wei Li,et al.  Evolutionary Convergence of Pathway-Specific Enzyme Expression Stoichiometry , 2018, Cell.

[9]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[10]  Dongrong Chen,et al.  Riboswitch Control of Aminoglycoside Antibiotic Resistance , 2013, Cell.

[11]  T. Lumley,et al.  gplots: Various R Programming Tools for Plotting Data , 2015 .

[12]  C. Huttenhower,et al.  Relating the metatranscriptome and metagenome of the human gut , 2014, Proceedings of the National Academy of Sciences.

[13]  Narmada Thanki,et al.  CDD: NCBI's conserved domain database , 2014, Nucleic Acids Res..

[14]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[15]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[16]  Massimo Deligios,et al.  A straightforward and efficient analytical pipeline for metaproteome characterization , 2014, Microbiome.

[17]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[18]  Derrick E. Wood,et al.  Kraken: ultrafast metagenomic sequence classification using exact alignments , 2014, Genome Biology.

[19]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[20]  Wen J. Li,et al.  Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation , 2015, Nucleic Acids Res..

[21]  Justin L Sonnenburg,et al.  Monitoring host responses to the gut microbiota , 2015, The ISME Journal.

[22]  Konstantinos D. Tsirigos,et al.  SignalP 5.0 improves signal peptide predictions using deep neural networks , 2019, Nature Biotechnology.

[23]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[24]  Rachel Green,et al.  Clarifying the Translational Pausing Landscape in Bacteria by Ribosome Profiling. , 2016, Cell reports.

[25]  P. Dennis,et al.  Cluster of genes in Escherichia coli for ribosomal proteins, ribosomal RNA, and RNA polymerase subunits. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Yong J. Kil,et al.  Byonic: Advanced Peptide and Protein Identification Software , 2012, Current protocols in bioinformatics.

[27]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[28]  M. Meyer,et al.  The role of mRNA structure in bacterial translational regulation , 2017, Wiley interdisciplinary reviews. RNA.

[29]  Pascale Cossart,et al.  Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria , 2016, Science.

[30]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[31]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[32]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[33]  Paul Wilmes,et al.  A decade of metaproteomics: Where we stand and what the future holds , 2015, Proteomics.

[34]  Adam M. Phillippy,et al.  Interactive metagenomic visualization in a Web browser , 2011, BMC Bioinformatics.

[35]  M. Nomura,et al.  Feedback regulation of ribosomal protein gene expression in Escherichia coli. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Rachel Green,et al.  High-precision analysis of translational pausing by ribosome profiling in bacteria lacking EFP. , 2015, Cell reports.

[37]  Uwe Ohler,et al.  Beyond Read-Counts: Ribo-seq Data Analysis to Understand the Functions of the Transcriptome. , 2017, Trends in genetics : TIG.

[38]  Catherine L. Worth,et al.  The Translational Landscape of the Human Heart , 2019, Cell.

[39]  Gerben Menschaert,et al.  REPARATION: ribosome profiling assisted (re-)annotation of bacterial genomes , 2017, bioRxiv.

[40]  Georgios A. Pavlopoulos,et al.  Large-Scale Analyses of Human Microbiomes Reveal Thousands of Small, Novel Genes , 2019, Cell.

[41]  David H Burkhardt,et al.  Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources , 2014, Cell.

[42]  Simon Fong,et al.  AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest , 2018, Scientific Reports.

[43]  A. Butte,et al.  The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease , 2014, Cell host & microbe.

[44]  Luis Serrano,et al.  Unraveling the hidden universe of small proteins in bacterial genomes , 2019, Molecular systems biology.

[45]  G. Zou Toward using confidence intervals to compare correlations. , 2007, Psychological methods.

[46]  M. Nomura,et al.  Regulation of ribosomal protein synthesis in Escherichia coli by selective mRNA inactivation. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[48]  Stool metatranscriptomics: A technical guideline for mRNA stabilisation and isolation , 2015, BMC Genomics.

[49]  Nick Goldman,et al.  RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data. , 2011, RNA.

[50]  Octávio L. Franco,et al.  Metaproteomics as a Complementary Approach to Gut Microbiota in Health and Disease , 2017, Front. Chem..

[51]  B. Palsson,et al.  A streamlined ribosome profiling protocol for the characterization of microorganisms. , 2015, BioTechniques.

[52]  L. Lindahl,et al.  Diverse mechanisms for regulating ribosomal protein synthesis in Escherichia coli. , 1994, Progress in nucleic acid research and molecular biology.

[53]  Dean Laslett,et al.  ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. , 2004, Nucleic acids research.

[54]  Nicholas T. Ingolia Ribosome Footprint Profiling of Translation throughout the Genome , 2016, Cell.

[55]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[56]  Michael P Snyder,et al.  Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans , 2015, Genome research.

[57]  Edward C. Uberbacher,et al.  Gene and translation initiation site prediction in metagenomic sequences , 2012, Bioinform..

[58]  M. Robles,et al.  University of Birmingham High throughput functional annotation and data mining with the Blast2GO suite , 2022 .