An improved model for ultraviolet- and x-ray-induced electron emission from CsI

A microscopic theoretical model is proposed for calculating the characteristics of ultraviolet photoemission and x-ray secondary electron emission induced from CsI photoconverters. This approach is based on a realistic picture of the basic interactions of photons and induced electrons within the material. Both differential and integral emission characteristics, such as energy spectra and quantum efficiencies, are estimated according to the model and are found to agree, in general, with experimental data. The model-calculated photoemission enhancement under high external electric fields is also considered and is fairly compatible with measured values. The applicability of the model in the field of radiation detectors incorporating solid photoconverters is discussed.

[1]  P. Miné,et al.  Electric field effects on the quantum efficiency of CsI photocathodes in gas media , 1994 .

[2]  Amos Breskin,et al.  Characteristics of secondary electron emission from CsI induced by x rays with energies up to 100 keV , 1993 .

[3]  A. Buzulutskov,et al.  Evidence for thin‐film protection of visible photocathodes , 1996 .

[4]  Amos Breskin,et al.  Monte Carlo simulations of secondary electron emission from CsI, induced by 1–10 keV x rays and electrons , 1992 .

[5]  The Peaceful Use Of Atomic Energy. , 1959, Canadian journal of comparative medicine and veterinary science.

[6]  E. Kane Simple Model for Collision Effects in Photoemission , 1966 .

[7]  M. Gryziński,et al.  Classical Theory of Atomic Collisions. I. Theory of Inelastic Collisions , 1965 .

[8]  Chen,et al.  Measurement of positron reemission from thin single-crystal W(100) films. , 1985, Physical review. B, Condensed matter.

[9]  W. E. Spicer,et al.  Photoemission from CsI - Experiment. , 1973 .

[10]  A. Weinstein,et al.  Sensitive far uv spectrograph with a multispectral element microchannel plate detector for rocket-borne astronomy. , 1976, Applied optics.

[11]  G. W. Green,et al.  Optical properties of caesium iodide in the vacuum ultraviolet , 1977 .

[12]  T. Boutboul,et al.  ULTRAVIOLET PHOTOABSORPTION MEASUREMENTS IN ALKALI IODIDE AND CAESIUM BROMIDE EVAPORATED FILMS , 1998 .

[13]  Richard Kass,et al.  First measurements with a diamond microstrip detector , 1995 .

[14]  Amos Breskin,et al.  Properties of CsI-based gaseous secondary emission X-ray imaging detectors , 1993 .

[15]  A. Breskin,et al.  Low-energy electron transport in alkali halides , 1994 .

[16]  David Pines,et al.  Elementary Excitations In Solids , 1964 .

[17]  Amos Breskin,et al.  Absolute quantum photoyield of diamond thin films: Dependence on surface preparation and stability under ambient conditions , 1998 .

[18]  T. Ferbel Experimental techniques in high-energy nuclear and particle physics , 1991 .

[19]  R. Baragiola Ionization of Solids by Heavy Particles , 1993 .

[20]  R. Poole,et al.  Electronic band structure of the alkali halides. I. Experimental parameters , 1975 .

[21]  S. Woolf,et al.  ELECTRON-ACOUSTIC PHONON SCATTERING IN SIO2 DETERMINED FROM A PSEUDO-POTENTIAL FOR ENERGIES OF E>EBZ , 1991 .

[22]  F. Piuz,et al.  CsI-photocathode and RICH detector , 1996 .

[23]  James H. Scofield,et al.  X-Ray Attenuation Cross Sections for Energies 100 eV to 100 keV and Elements Z = 1 to Z = 92 , 1988 .

[24]  Rudd,et al.  Binary-encounter-dipole model for electron-impact ionization. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[25]  G. W. Fraser The characterisation of soft X-ray photocathodes in the wavelength band 1–300 Å: II. Caesium iodide and other insulators of high photoelectric yield , 1983 .

[26]  T. Boutboul,et al.  Inelastic Electron Interactions in the Energy Range 50 eV to 10 keV in Insulators: Alkali Halides and Metal Oxides , 1996 .

[27]  K. T. McDonald,et al.  Properties of reflective and semitransparent CsI photocathodes , 1994 .

[28]  Z. Ding,et al.  Monte Carlo modelling of electron-solid interactions , 1992 .

[29]  A. Buzulutskov,et al.  The protection of KCsSb photocathodes with CsBr films , 1997 .

[30]  Ludmila Eckertova,et al.  Physics of thin films , 1977 .

[31]  A. Breskin Secondary emission gaseous detectors: A New class of radiation imaging devices , 1995 .

[32]  A. Breskin,et al.  Escape length of ultraviolet induced photoelectrons in alkali iodide and CsBr evaporated films: Measurements and modeling , 1998 .

[33]  E. Nappi,et al.  backscattering effects in photoemission from CsI into gas media , 1996 .

[34]  B. L. Henke,et al.  The characterization of x‐ray photocathodes in the 0.1–10‐keV photon energy region , 1981 .

[35]  Amos Breskin,et al.  Spatial characteristics of electron‐ and photon‐induced secondary electron cascades in CsI , 1994 .

[36]  J. Ziman,et al.  In: Electrons and Phonons , 1961 .

[37]  T. Boutboul,et al.  Electron inelastic mean free path and stopping power modelling in alkali halides in the 50 eV–10 keV energy range , 1996 .

[38]  Amos Breskin,et al.  Field enhancement of the photoelectric and secondary electron emission from CsI , 1995 .

[39]  M. Marinelli,et al.  Electro-optical properties of diamond thin films as UV photodetectors , 1997 .

[40]  Amos Breskin,et al.  CsI UV photocathodes: history and mystery , 1996 .

[41]  John Liesegang,et al.  Soft-x-ray-induced secondary-electron emission from semiconductors and insulators: Models and measurements , 1979 .

[42]  J. Gethyn Timothy,et al.  Detector Arrays For Photometric Measurements At Soft X-Ray, Ultraviolet And Visible Wavelengths , 1979, Other Conferences.

[43]  James F. Pearson,et al.  Soft X-ray energy resolution with microchannel plate detectors of high quantum detection efficiency. , 1984 .

[44]  J. Cazaux The electric image effects at dielectric surfaces , 1996 .

[45]  A. Gusarov,et al.  The role of the plasmon mechanism in the secondary electron emission in LiF , 1994 .