Inverse perspective mapping simplifies optical flow computation and obstacle detection

We present a scheme for obstacle detection from optical flow which is based on strategies of biological information processing. Optical flow is established by a local “voting” (non-maximum suppression) over the outputs of correlation-type motion detectors similar to those found in the fly visual system. The computational theory of obstacle detection is discussed in terms of space-variances of the motion field. An efficient mechanism for the detection of disturbances in the expected motion field is based on “inverse perspective mapping”, i.e., a coordinate transform or retinotopic mapping applied to the image. It turns out that besides obstacle detection, inverse perspective mapping has additional advantages for regularizing optical flow algorithms. Psychophysical evidence for body-scaled obstacle detection and related neurophysiological results are discussed.

[1]  R. Hetherington The Perception of the Visual World , 1952 .

[2]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[3]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[4]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[5]  A. Hughes The Topography of Vision in Mammals of Contrasting Life Style: Comparative Optics and Retinal Organisation , 1977 .

[6]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[8]  Ellen C. Hildreth,et al.  Computations Underlying the Measurement of Visual Motion , 1984, Artif. Intell..

[9]  W. Warren,et al.  Visual guidance of walking through apertures: body-scaled information for affordances. , 1987, Journal of experimental psychology. Human perception and performance.

[10]  James J. Little,et al.  Parallel Optical Flow Using Local Voting , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[11]  Guy Lindsay Scott,et al.  Local and Global Interpretation of Moving Images , 1988 .

[13]  A. Johnston The geometry of the topographic map in striate cortex , 1989, Vision Research.

[14]  T. Poggio,et al.  A parallel algorithm for real-time computation of optical flow , 1989, Nature.

[15]  A. Verri,et al.  Analysis of differential and matching methods for optical flow , 1989, [1989] Proceedings. Workshop on Visual Motion.

[16]  J. Zeil,et al.  Spatial Vision in a Flat World: Optical and Neural Adaptations in Arthropods , 1989 .

[17]  Hanspeter A. Mallot,et al.  Why Cortices? Neural Networks for Visual Information Processing , 1989 .

[18]  Tomaso A. Poggio,et al.  Motion Field and Optical Flow: Qualitative Properties , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Hanspeter A. Mallot,et al.  Neural mapping and space-variant image processing , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[20]  Heinrich H. Bülthoff,et al.  Motion Detection by Correlation and Voting , 1990 .

[21]  L. I. Epstein An attempt to explain the differences between the upper and lower halves of the striate cortical map of the cat's field of view , 2004, Biological Cybernetics.

[22]  Berthold K. P. Horn,et al.  Direct methods for recovering motion , 1988, International Journal of Computer Vision.