Applications of randomized low discrepancy sequences to the valuation of complex securities
暂无分享,去创建一个
[1] S. Joe. Letter section: Randomization of lattice rules for numerical multiple integration , 1990 .
[2] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[3] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[4] K. S. Tan,et al. Quasi-Monte Carlo Methods in Numerical Finance , 1996 .
[5] Joseph F. Traub,et al. Faster Valuation of Financial Derivatives , 1995 .
[6] A. Owen. Scrambled net variance for integrals of smooth functions , 1997 .
[7] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[8] R. Cranley,et al. Randomization of Number Theoretic Methods for Multiple Integration , 1976 .
[9] Ralph B. D'Agostino,et al. Goodness-of-Fit-Techniques , 2020 .
[10] P. Glasserman,et al. Monte Carlo methods for security pricing , 1997 .
[11] E. Braaten,et al. An Improved Low-Discrepancy Sequence for Multidimensional Quasi-Monte Carlo Integration , 1979 .
[12] Fred J. Hickernell,et al. The mean square discrepancy of randomized nets , 1996, TOMC.
[13] S. Tezuka,et al. Toward real-time pricing of complex financial derivatives , 1996 .
[14] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[15] A. Owen. Monte Carlo Variance of Scrambled Net Quadrature , 1997 .
[16] Bennett L. Fox,et al. Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators , 1986, TOMS.
[17] R. Caflisch,et al. Quasi-Monte Carlo integration , 1995 .
[18] William H. Press,et al. Numerical Recipes in C, 2nd Edition , 1992 .
[19] Harald Niederreiter,et al. Implementation and tests of low-discrepancy sequences , 1992, TOMC.
[20] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[21] L. Shenton,et al. Omnibus test contours for departures from normality based on √b1 and b2 , 1975 .
[22] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[23] D. Hunter. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .
[24] William H. Press,et al. Numerical recipes in C , 2002 .
[25] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[26] H. Faure. Good permutations for extreme discrepancy , 1992 .
[27] Russel E. Caflisch,et al. Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..