Role of bacterial cell surface structures in Escherichia coli biofilm formation.

Various cell surface molecules and structures have been implicated in biofilm formation in Escherichia coli. This review presents an overview of the occurrence, production and interaction of these components, their influence at one or more developmental stages of biofilm formation, and their potential role as virulence factors in pathogenic E. coli strains.

[1]  I. Henderson,et al.  The autotransporter secretion system. , 2004, Research in microbiology.

[2]  E. A. Elsinghorst,et al.  Enterotoxigenic Escherichia coli TibA Glycoprotein Adheres to Human Intestine Epithelial Cells , 2001, Infection and Immunity.

[3]  M. Schembri,et al.  Global gene expression in Escherichia coli biofilms , 2003, Molecular microbiology.

[4]  Harry L. T. Mobley,et al.  Pathogenic Escherichia coli , 2004, Nature Reviews Microbiology.

[5]  S. Normark,et al.  Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli , 1997, The EMBO journal.

[6]  P. Fey,et al.  Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. , 2001, The Journal of infectious diseases.

[7]  C. Prigent-Combaret,et al.  Complex Regulatory Network Controls Initial Adhesion and Biofilm Formation in Escherichia coli via Regulation of thecsgD Gene , 2001, Journal of bacteriology.

[8]  R. Kolter,et al.  Exopolysaccharide Production Is Required for Development of Escherichia coli K-12 Biofilm Architecture , 2000, Journal of bacteriology.

[9]  J. Preston,et al.  The pgaABCD Locus of Escherichia coli Promotes the Synthesis of a Polysaccharide Adhesin Required for Biofilm Formation , 2004, Journal of bacteriology.

[10]  R. Kolter,et al.  The outer membrane protein, Antigen 43, mediates cell‐to‐cell interactions within Escherichia coli biofilms , 2000, Molecular microbiology.

[11]  M. W. van der Woude,et al.  Phase variation of Ag43 in Escherichia coli: Dam‐dependent methylation abrogates OxyR binding and OxyR‐mediated repression of transcription , 2000, Molecular microbiology.

[12]  M. Rohde,et al.  The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix , 2001, Molecular microbiology.

[13]  M. Schembri,et al.  Structure‐function analysis of the self‐recognizing Antigen 43 autotransporter protein from Escherichia coli , 2003, Molecular microbiology.

[14]  A. Zehnder,et al.  The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli. , 2003, Microbiology.

[15]  G. Schoolnik,et al.  Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. , 1998, Science.

[16]  B. J. Hinnebusch,et al.  Depolymerization of β-1,6-N-Acetyl-d-Glucosamine Disrupts the Integrity of Diverse Bacterial Biofilms , 2005, Journal of bacteriology.

[17]  S. J. Knott,et al.  Effect of antibiotics on non-growing planktonic cells and biofilms of Escherichia coli. , 1994, The Journal of antimicrobial chemotherapy.

[18]  T. Wood,et al.  Gene expression in Escherichia coli biofilms , 2004, Applied Microbiology and Biotechnology.

[19]  M. Woodward,et al.  The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces. , 2002, International journal of medical microbiology : IJMM.

[20]  T. Silhavy,et al.  Periplasmic stress and ECF sigma factors. , 2001, Annual review of microbiology.

[21]  J. Costerton,et al.  The involvement of cell-to-cell signals in the development of a bacterial biofilm. , 1998, Science.

[22]  James J. Valdes,et al.  DNA Microarray-Based Identification of Genes Controlled by Autoinducer 2-Stimulated Quorum Sensing inEscherichia coli , 2001, Journal of bacteriology.

[23]  C. Prigent-Combaret,et al.  Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. , 2000, Environmental microbiology.

[24]  Vanessa Sperandio,et al.  Quorum Sensing Is a Global Regulatory Mechanism in Enterohemorrhagic Escherichia coli O157:H7 , 2001, Journal of bacteriology.

[25]  D. Friedman,et al.  Integration host factor is required for the DNA inversion that controls phase variation in Escherichia coli. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[26]  H. Ceri,et al.  The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms , 1999, Journal of Clinical Microbiology.

[27]  O. Cerf,et al.  Biofilms and their consequences, with particular reference to hygiene in the food industry. , 1993, The Journal of applied bacteriology.

[28]  S. Normark,et al.  Expression of two csg operons is required for production of fibronectin‐ and Congo red‐binding curli polymers in Escherichia coli K‐12 , 1995, Molecular microbiology.

[29]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[30]  J. Costerton,et al.  Biofilms as complex differentiated communities. , 2002, Annual review of microbiology.

[31]  J. Nataro,et al.  Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli , 2001, Molecular microbiology.

[32]  B. Ahmer Cell‐to‐cell signalling in Escherichia coli and Salmonella enterica , 2004, Molecular microbiology.

[33]  P. Klemm Fimbriae Adhesion, Genetics, Biogenesis, and Vaccines , 1994 .

[34]  S. Molin,et al.  Development and maturation of Escherichia coli K‐12 biofilms , 2003, Molecular microbiology.

[35]  A. Henrici Studies of Freshwater Bacteria , 1933, Journal of bacteriology.

[36]  Søren Molin,et al.  Global impact of mature biofilm lifestyle on Escherichia coli K‐12 gene expression , 2003, Molecular microbiology.

[37]  M. Schembri,et al.  Differential Expression of the Escherichiacoli Autoaggregation Factor Antigen 43 , 2003, Journal of bacteriology.

[38]  P. Klemm,et al.  Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. , 1986, The EMBO journal.

[39]  C. Higgins,et al.  Fimbrial phase variation in Escherichia coli: dependence on integration host factor and homologies with other site-specific recombinases , 1987, Journal of bacteriology.

[40]  V. Stout Regulation of capsule synthesis includes interactions of the RcsC/RcsB regulatory pair. , 1994, Research in microbiology.

[41]  U. Römling,et al.  The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. , 2003, Research in microbiology.

[42]  L. Björck,et al.  Activation of the contact-phase system on bacterial surfaces—a clue to serious complications in infectious diseases , 1998, Nature Medicine.

[43]  M. Schembri,et al.  Coordinate gene regulation by fimbriae‐induced signal transduction , 2001, The EMBO journal.

[44]  J. Ghigo Natural conjugative plasmids induce bacterial biofilm development , 2001, Nature.

[45]  S. Normark,et al.  Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. , 2000, The Journal of infectious diseases.

[46]  D. Clarke,et al.  The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K‐12 and controls the expression of a regulon in response to growth on a solid surface , 2003, Molecular microbiology.

[47]  S. Molin,et al.  Antigen 43 facilitates formation of multispecies biofilms. , 2000, Environmental microbiology.

[48]  C. E. Zobell The Effect of Solid Surfaces upon Bacterial Activity , 1943, Journal of bacteriology.

[49]  W. Sierralta,et al.  Curli Fibers Are Highly Conserved between Salmonella typhimurium and Escherichia coli with Respect to Operon Structure and Regulation , 1998, Journal of bacteriology.

[50]  M. Schembri,et al.  Capsule Shields the Function of Short Bacterial Adhesins , 2004, Journal of bacteriology.

[51]  T. Kawula,et al.  Rapid site-specific DNA inversion in Escherichia coli mutants lacking the histonelike protein H-NS , 1991, Journal of bacteriology.

[52]  J. Costerton,et al.  Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms , 2002, Clinical Microbiology Reviews.

[53]  S. Hultgren,et al.  Intracellular Bacterial Biofilm-Like Pods in Urinary Tract Infections , 2003, Science.

[54]  S. Normark,et al.  Activation of inducible nitric oxide synthase/nitric oxide by curli fibers leads to a fall in blood pressure during systemic Escherichia coli infection in mice. , 2001, The Journal of infectious diseases.

[55]  P. Bertin,et al.  Regulation cascade of flagellar expression in Gram-negative bacteria. , 2003, FEMS microbiology reviews.

[56]  S. Gottesman,et al.  RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli , 1990, Journal of bacteriology.

[57]  V. Sperandio,et al.  Lack of expression of bundle-forming pili in some clinical isolates of enteropathogenic Escherichia coli (EPEC) is due to a conserved large deletion in the bfp operon. , 1999, FEMS microbiology letters.

[58]  R. Donlan,et al.  Biofilms: Microbial Life on Surfaces , 2002, Emerging infectious diseases.

[59]  L. Björck,et al.  Assembly of human contact phase proteins and release of bradykinin at the surface of curli‐expressing Escherichia coli , 1996, Molecular microbiology.

[60]  K. Otto,et al.  Adhesion of Type 1-Fimbriated Escherichia coli to Abiotic Surfaces Leads to Altered Composition of Outer Membrane Proteins , 2001, Journal of bacteriology.

[61]  P. Reeves,et al.  Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid , 1996, Journal of bacteriology.

[62]  F. Neidhart Escherichia coli and Salmonella. , 1996 .

[63]  S. Henikoff,et al.  Finding protein similarities with nucleotide sequence databases. , 1990, Methods in enzymology.

[64]  P. Babitzke,et al.  Positive regulation of motility and flhDC expression by the RNA‐binding protein CsrA of Escherichia coli , 2001, Molecular microbiology.

[65]  M. Schmidt,et al.  Cloning and expression of an adhesin (AIDA-I) involved in diffuse adherence of enteropathogenic Escherichia coli , 1989, Infection and immunity.

[66]  M. Schembri,et al.  Novel Roles for the AIDA Adhesin from Diarrheagenic Escherichia coli: Cell Aggregation and Biofilm Formation , 2004, Journal of bacteriology.

[67]  T. Mizuno,et al.  A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC → YojN → RcsB signalling pathway implicated in capsular synthesis and swarming behaviour , 2001, Molecular microbiology.

[68]  C. Prigent-Combaret,et al.  Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. , 1999, FEMS microbiology letters.

[69]  Scott J. Hultgren,et al.  Role of Escherichia coli Curli Operons in Directing Amyloid Fiber Formation , 2002, Science.

[70]  C. Prigent-Combaret,et al.  Isolation of an Escherichia coli K-12 Mutant Strain Able To Form Biofilms on Inert Surfaces: Involvement of a New ompR Allele That Increases Curli Expression , 1998, Journal of bacteriology.

[71]  L. A. Fernández,et al.  Secretion and assembly of regular surface structures in Gram-negative bacteria. , 2000, FEMS microbiology reviews.

[72]  I. Blomfield,et al.  Interaction of FimB and FimE with the fim switch that controls the phase variation of type 1 fimbriae in Escherichia coli K‐12 , 1996, Molecular microbiology.

[73]  G. O’Toole,et al.  Microbial Biofilms: from Ecology to Molecular Genetics , 2000, Microbiology and Molecular Biology Reviews.

[74]  K. Lewis,et al.  Specialized Persister Cells and the Mechanism of Multidrug Tolerance in Escherichia coli , 2004, Journal of bacteriology.

[75]  S Falkow,et al.  Copyright © 1997, American Society for Microbiology Common Themes in Microbial Pathogenicity Revisited , 2022 .

[76]  T. Romeo,et al.  Biofilm Formation and Dispersal under the Influence of the Global Regulator CsrA of Escherichia coli , 2002, Journal of bacteriology.

[77]  M. S. McClain,et al.  Lrp stimulates phase variation of type 1 fimbriation in Escherichia coli K-12 , 1993, Journal of bacteriology.

[78]  H. Hasman,et al.  Antigen-43-Mediated Autoaggregation ofEscherichia coli Is Blocked by Fimbriation , 1999, Journal of bacteriology.

[79]  C. Prigent-Combaret,et al.  Abiotic Surface Sensing and Biofilm-Dependent Regulation of Gene Expression in Escherichia coli , 1999, Journal of bacteriology.

[80]  M. W. van der Woude,et al.  Phase Variation of Ag43 Is Independent of the Oxidation State of OxyR , 2002, Journal of bacteriology.

[81]  S. Normark,et al.  Fibronectin binding mediated by a novel class of surface organelles on Escherichia coll , 1989, Nature.

[82]  K. Otto,et al.  Inactivation of ompX Causes Increased Interactions of Type 1 Fimbriated Escherichia coli with Abiotic Surfaces , 2004, Journal of bacteriology.

[83]  Janelle M. Hare,et al.  High-Frequency RecA-Dependent and -Independent Mechanisms of Congo Red Binding Mutations in Yersinia pestis , 1999, Journal of bacteriology.

[84]  W. Dunne,et al.  Bacterial Adhesion: Seen Any Good Biofilms Lately? , 2002, Clinical Microbiology Reviews.

[85]  E. Greenberg,et al.  Quorum Sensing in Staphylococcus aureus Biofilms , 2004, Journal of bacteriology.

[86]  P. Klemm,et al.  Localization of promoters in the fim gene cluster and the effect of H-NS on the transcription of fimB and fimE. , 1994, FEMS microbiology letters.

[87]  R. Kolter,et al.  Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili , 1998, Molecular microbiology.