Classical computing, quantum computing, and Shor's factoring algorithm

This is an expository talk written for the Bourbaki Seminar. After a brief introduction, Section 1 discusses in the categorical language the structure of the classical deterministic computations. Basic notions of complexity icluding the P/NP problem are reviewed. Section 2 introduces the notion of quantum parallelism and explains the main issues of quantum computing. Section 3 is devoted to four quantum subroutines: initialization, quantum computing of classical Boolean functions, quantum Fourier transform, and Grover's search algorithm. The central Section 4 explains Shor's factoring algorithm. Section 5 relates Kolmogorov's complexity to the spectral properties of computable function. Appendix contributes to the prehistory of quantum computing.

[1]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[2]  John L. Bell,et al.  A course in mathematical logic , 1977 .

[3]  R. Feynman Simulating physics with computers , 1999 .

[4]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[5]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[6]  D. Grigoriev,et al.  Testing the shift-equivalence of polynomials using quantum machines , 1996 .

[7]  I PaulBenioff Quantum Mechanical Hamiltonian Models of Turing Machines , 1982 .

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  M H Freedman,et al.  Limit, logic, and computation , 1998, Proc. Natl. Acad. Sci. USA.

[10]  Yu. I. Manin,et al.  Course in mathematical logic , 1977, Graduate texts in mathematics.

[11]  Ronald V. Book,et al.  Review: Michael R. Garey and David S. Johnson, Computers and intractability: A guide to the theory of $NP$-completeness , 1980 .

[12]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[13]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[14]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[15]  M H Freedman,et al.  P/NP, and the quantum field computer , 1998, Proc. Natl. Acad. Sci. USA.

[16]  David Mumford,et al.  The Statistical Description of Visual Signals , 1996 .

[17]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[18]  Arto Salomaa,et al.  Computation and Automata , 1984 .

[19]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[20]  George Boolos,et al.  Review: Yu. I. Manin, A Course in Mathematical Logic , 1986 .

[21]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[22]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.