Modeling Retina Adaptation with Multiobjective Parameter Fitting
暂无分享,去创建一个
Pablo Martínez-Cañada | Francisco J. Pelayo | Christian A. Morillas | Samuel F. Romero | F. Pelayo | S. Romero | C. Morillas | P. Martínez-Cañada
[1] J. B. Demb,et al. Contrast Adaptation in Subthreshold and Spiking Responses of Mammalian Y-Type Retinal Ganglion Cells , 2005, The Journal of Neuroscience.
[2] Peter Dayan,et al. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .
[3] A. Kohn. Visual adaptation: physiology, mechanisms, and functional benefits. , 2007, Journal of neurophysiology.
[4] J. Diamond,et al. Vesicle depletion and synaptic depression at a mammalian ribbon synapse. , 2006, Journal of neurophysiology.
[5] J. B. Demb,et al. Presynaptic Mechanism for Slow Contrast Adaptation in Mammalian Retinal Ganglion Cells , 2006, Neuron.
[6] M. Carandini,et al. Functional Mechanisms Shaping Lateral Geniculate Responses to Artificial and Natural Stimuli , 2008, Neuron.
[7] M. Meister,et al. Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.
[8] Fred Rieke,et al. Review the Challenges Natural Images Pose for Visual Adaptation , 2022 .
[9] Pablo Martínez-Cañada,et al. First Stage of a Human Visual System Simulator: The Retina , 2015, CCIW.
[10] Mark S. Cembrowski,et al. A Synaptic Mechanism for Retinal Adaptation to Luminance and Contrast , 2011, The Journal of Neuroscience.
[11] C. Enroth-Cugell,et al. The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.
[12] Pierre Kornprobst,et al. Virtual Retina: A biological retina model and simulator, with contrast gain control , 2009, Journal of Computational Neuroscience.
[13] Kerry J. Kim,et al. Temporal Contrast Adaptation in the Input and Output Signals of Salamander Retinal Ganglion Cells , 2001, The Journal of Neuroscience.
[14] Marc Parizeau,et al. DEAP: evolutionary algorithms made easy , 2012, J. Mach. Learn. Res..
[15] Bruno A. Olshausen,et al. Book Review , 2003, Journal of Cognitive Neuroscience.
[16] B. Borghuis,et al. Cellular Basis for Contrast Gain Control over the Receptive Field Center of Mammalian Retinal Ganglion Cells , 2007, The Journal of Neuroscience.
[17] F. Rieke. Temporal Contrast Adaptation in Salamander Bipolar Cells , 2001, The Journal of Neuroscience.
[18] Kerry J. Kim,et al. Slow Na+ Inactivation and Variance Adaptation in Salamander Retinal Ganglion Cells , 2003, The Journal of Neuroscience.
[19] F. Amthor,et al. Nonlinearity of the inhibition underlying retinal directional selectivity , 1991, Visual Neuroscience.
[20] S. Baccus,et al. Coordinated dynamic encoding in the retina using opposing forms of plasticity , 2011, Nature Neuroscience.
[21] E. Chichilnisky,et al. Adaptation to Temporal Contrast in Primate and Salamander Retina , 2001, The Journal of Neuroscience.
[22] J. Victor. The dynamics of the cat retinal X cell centre. , 1987, The Journal of physiology.
[23] J. Pokorny,et al. Primate horizontal cell dynamics: an analysis of sensitivity regulation in the outer retina. , 2001, Journal of neurophysiology.
[24] J. Movshon,et al. Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.
[25] S. Baccus,et al. Linking the Computational Structure of Variance Adaptation to Biophysical Mechanisms , 2012, Neuron.
[26] Thomas Euler,et al. Retinal bipolar cells: elementary building blocks of vision , 2014, Nature Reviews Neuroscience.
[27] T. Poggio,et al. A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[28] F. Rieke,et al. Single-Photon Absorptions Evoke Synaptic Depression in the Retina to Extend the Operational Range of Rod Vision , 2008, Neuron.
[29] J. B. Demb,et al. Functional circuitry of visual adaptation in the retina , 2008, The Journal of physiology.
[30] J. B. Demb,et al. Different Circuits for ON and OFF Retinal Ganglion Cells Cause Different Contrast Sensitivities , 2003, The Journal of Neuroscience.
[31] Marc-Oliver Gewaltig,et al. NEST (NEural Simulation Tool) , 2007, Scholarpedia.
[32] R. W. Rodieck. Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.
[33] Adrien Wohrer. Model and large-scale simulator of a biological retina, with contrast gain control. (Modèle et simulateur à grande échelle d'une rétine biologique, avec contrôle de gain) , 2008 .
[34] Barry B. Lee,et al. Processing of Natural Temporal Stimuli by Macaque Retinal Ganglion Cells , 2002, The Journal of Neuroscience.