Application of M-PML absorbing boundary conditions to the numerical simulation of wave propagation in anisotropic media. Part II: Stability
暂无分享,去创建一个
[1] P. Monk,et al. Optimizing the Perfectly Matched Layer , 1998 .
[2] L. Thomsen. Weak elastic anisotropy , 1986 .
[3] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[4] C. Tsogka,et al. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .
[5] Donald F. Winterstein,et al. Velocity anisotropy terminology for geophysicists , 1990 .
[6] Peter G. Petropoulos,et al. Reflectionless Sponge Layers as Absorbing Boundary Conditions for the Numerical Solution of Maxwell Equations in Rectangular, Cylindrical, and Spherical Coordinates , 2000, SIAM J. Appl. Math..
[7] J. Virieux. P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .
[8] Vadim Lisitsa,et al. Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity ‡ , 2010 .
[9] Zhijing Wang,et al. Seismic Anisotropy In Sedimentary Rocks , 2001 .
[10] Patrick Joly,et al. Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .
[11] Kristel C. Meza-Fajardo,et al. A Nonconvolutional, Split-Field, Perfectly Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media: Stability Analysis , 2008 .
[12] Zhijing Wang. Seismic anisotropy in sedimentary rocks, part 2: Laboratory data , 2002 .