Triangulated spherical splines for geopotential reconstruction

[1]  Larry L. Schumaker,et al.  A Domain Decomposition Method for Computing Bivariate Spline Fits of Scattered Data , 2009, SIAM J. Numer. Anal..

[2]  Christopher Jekeli,et al.  Gravity, Geoid and Space Missions , 2008 .

[3]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[4]  Global and Regional Gravity Field Solutions from GRACE Observations , 2007 .

[5]  Torsten Mayer-Gürr,et al.  Regional gravity modeling in terms of spherical base functions , 2006 .

[6]  M. Holschneider,et al.  New insights on intraplate volcanism in French Polynesia from wavelet analysis of GRACE, CHAMP, and sea surface data , 2006 .

[7]  Willi Freeden,et al.  Wavelet Modeling of Regional and Temporal Variations of the Earth’s Gravitational Potential Observed by GRACE , 2006 .

[8]  Christopher Jekeli,et al.  Precise estimation of in situ geopotential differences from GRACE low‐low satellite‐to‐satellite tracking and accelerometer data , 2006 .

[9]  C. K. Shum,et al.  Spherical Splines for Data Interpolation and Fitting , 2006, SIAM J. Sci. Comput..

[10]  Markus Rothacher,et al.  Observation of the Earth system from space , 2006 .

[11]  Torsten Mayer-Gürr,et al.  Gravity Field Recovery from GRACE-SST Data of Short Arcs , 2006 .

[12]  Michael G. Sideris,et al.  The gravity field and GGOS , 2005 .

[13]  Willi Freeden,et al.  Spaceborne gravitational field determination by means of locally supported wavelets , 2005 .

[14]  Ming-Jun Lai,et al.  On convergence rate of the augmented Lagrangian algorithm for nonsymmetric saddle point problems , 2005 .

[15]  C. Jekeli Spline Representations of Functions on a Sphere for Geopotential Modeling , 2005 .

[16]  A. Eicker,et al.  ITG-CHAMP01: a CHAMP gravity field model from short kinematic arcs over a one-year observation period , 2005 .

[17]  F. LeMoine,et al.  Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements , 2005 .

[18]  J. Lemoine,et al.  Earth Gravity Field and Seasonal Variability from CHAMP , 2005 .

[19]  Fernando Sansò,et al.  A Window on the Future of Geodesy , 2005 .

[20]  Multiresolution representation of a regional geoid from satellite and terrestrial gravity data , 2005 .

[21]  Jens Wickert,et al.  Earth Observation with CHAMP , 2005 .

[22]  Modelling the Earth’s gravity field using wavelet frames , 2005 .

[23]  Michael Schmidt,et al.  Towards the Estimation of a Multi-Resolution Representation of the Gravity Field Based on Spherical Wavelets , 2005 .

[24]  Mioara Mandea,et al.  Wavelet frames: an alternative to spherical harmonic representation of potential fields , 2004 .

[25]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[26]  Larry L. Schumaker,et al.  On the Approximation Order of Splines on Spherical Triangulations , 2004, Adv. Comput. Math..

[27]  Ming-Jun Lai,et al.  Error Bounds for Minimal Energy Interpolatory Spherical Splines , 2004 .

[28]  Michael Schmidt Multi-resolution representation of regional gravity data. IAG International Symposium Gravity, Geoid and Space Missions , 2004 .

[29]  J. Kusche,et al.  Multi-resolution representation of regional gravity data sets , 2004 .

[30]  C. Shum,et al.  On the estimation of a multi-resolution representation of the gravity field based on spherical harmonics and wavelets , 2005 .

[31]  Connie M. Borror,et al.  A Second Course in Statistics: Regression Analysis, 6th Ed. , 2003 .

[32]  Christopher Jekeli,et al.  Static and temporal gravity field recovery using grace potential difference observables , 2003 .

[33]  Willi Freeden,et al.  A survey on wavelet methods for (geo) applications. , 2003 .

[34]  Christopher Jekeli,et al.  Efficient gravity field recovery using in situ disturbing potential observables from CHAMP , 2002 .

[35]  M. Schmid,et al.  N2O/222Rn ‐ soil flux calibration in the stable nocturnal surface layer , 2002 .

[36]  Willi Freeden,et al.  Satellite-to-satellite tracking and satellite gravity gradiometry (Advanced techniques for high-resolution geopotential field determination) , 2002 .

[37]  Philip Crotwell Constructive Approximation on the Sphere , 2000 .

[38]  R. Klees,et al.  Numerical solution of geodetic boundary value problems using a global reference field , 1999 .

[39]  Approximate solution of normal equations by eigenvalue decomposition , 1999 .

[40]  L. Schumaker,et al.  Scattered data fitting on the sphere , 1998 .

[41]  W. Freeden,et al.  An integrated wavelet concept of physical geodesy , 1998 .

[42]  Willi Freeden,et al.  Constructive Approximation on the Sphere: With Applications to Geomathematics , 1998 .

[43]  N. K. Pavlis,et al.  New high-resolution model developed for Earth's gravitational field , 1998 .

[44]  The solution of linear inverse problems in satellite geodesy by means of spherical spline approximation , 1996 .

[45]  Larry L. Schumaker,et al.  Fitting scattered data on sphere-like surfaces using spherical splines , 1996 .

[46]  Larry L. Schumaker,et al.  Dimension and local bases of homogeneous spline spaces , 1996 .

[47]  Larry L. Schumaker,et al.  Bernstein-Bézier polynomials on spheres and sphere-like surfaces , 1996, Comput. Aided Geom. Des..

[48]  W. Mendenhall,et al.  A Second Course in Statistics: Regression Analysis , 1996 .

[49]  C. Readings,et al.  Gravity field and steady-state ocean circulation mission , 1996 .