Implications of the SNARE hypothesis for intracellular membrane topology and dynamics

[1]  T. Misteli,et al.  COP-coated vesicles are involved in the mitotic fragmentation of Golgi stacks in a cell-free system , 1994, The Journal of cell biology.

[2]  J. Rothman,et al.  ADP-ribosylation factor and coatomer couple fusion to vesicle budding , 1994, The Journal of cell biology.

[3]  G. Warren,et al.  Isolation of a matrix that binds medial Golgi enzymes , 1994, The Journal of cell biology.

[4]  J. Rothman,et al.  Stepwise assembly of functionally active transport vesicles , 1993, Cell.

[5]  R. Jahn,et al.  Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC‐1/syntaxin. , 1993, The EMBO journal.

[6]  P. Brennwald,et al.  Friends and family: The role of the rab GTPases in vesicular traffic , 1993, Cell.

[7]  Mark K. Bennett,et al.  A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion , 1993, Cell.

[8]  H. Ronne,et al.  Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. , 1993, The EMBO journal.

[9]  Robyn Roth,et al.  Golgi membrane dynamics imaged by freeze-etch electron microscopy: Views of different membrane coatings involved in tubulation versus vesiculation , 1993, Cell.

[10]  G. Augustine,et al.  Synaptotagmin and neurotransmitter release , 1993, Cell.

[11]  R. Scheller,et al.  The syntaxin family of vesicular transport receptors , 1993, Cell.

[12]  P. Novick,et al.  Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae , 1993, Cell.

[13]  Huttner Wb Cell biology. Snappy exocytoxins. , 1993 .

[14]  Thomas C. Südhof,et al.  Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25 , 1993, Nature.

[15]  G. Warren,et al.  Kin recognition , 1993, FEBS letters.

[16]  M. Bretscher,et al.  Cholesterol and the Golgi apparatus. , 1993, Science.

[17]  G. Warren,et al.  The Golgi stack reassembles during telophase before arrival of proteins transported from the endoplasmic reticulum , 1993, The Journal of cell biology.

[18]  P. Camilli Exocytosis goes with a SNAP , 1993, Nature.

[19]  T. Südhof,et al.  Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein , 1993, Nature.

[20]  S. Ferro-Novick,et al.  Bos1p, an integral membrane protein of the endoplasmic reticulum to Golgi transport vesicles, is required for their fusion competence , 1993, Cell.

[21]  P. Brennwald,et al.  Interactions of three domains distinguishing the Ras-related GTP-binding proteins Ypt1 and Sec4 , 1993, Nature.

[22]  D. Botstein,et al.  Specificity domains distinguish the Ras-related GTPases Ypt1 and Sec4 , 1993, Nature.

[23]  M. Jackson,et al.  Retrieval of transmembrane proteins to the endoplasmic reticulum , 1993, The Journal of cell biology.

[24]  R. Scheller,et al.  The molecular machinery for secretion is conserved from yeast to neurons. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[26]  T A Rapoport,et al.  A class of membrane proteins with a C-terminal anchor. , 1993, Trends in cell biology.

[27]  R. Scheller,et al.  A role for synaptotagmin (p65) in regulated exocytosis , 1993, Cell.

[28]  G. Warren,et al.  Membrane partitioning during cell division. , 1993, Annual review of biochemistry.

[29]  K. Struhl,et al.  The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α Helices: Crystal structure of the protein-DNA complex , 1992, Cell.

[30]  J. Skene,et al.  The 25 kDa synaptosomal-associated protein SNAP-25 is the major methionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  B. Goud,et al.  The small GTP-binding protein rab6p is distributed from medial Golgi to the trans-Golgi network as determined by a confocal microscopic approach. , 1992, Journal of cell science.

[32]  H. Pelham,et al.  SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex , 1992, The Journal of cell biology.

[33]  F. Benfenati,et al.  Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin , 1992, Nature.

[34]  G. Griffiths,et al.  Cell biology of viruses that assemble along the biosynthetic pathway , 1992, Seminars in Cell Biology.

[35]  P. Sluijs,et al.  The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway , 1992, Cell.

[36]  Kai Simons,et al.  The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway , 1992, Cell.

[37]  S. Pfeffer,et al.  Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex , 1992, The Journal of cell biology.

[38]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[39]  M. Wigler,et al.  SNC1, a yeast homolog of the synaptic vesicle-associated membrane protein/synaptobrevin gene family: genetic interactions with the RAS and CAP genes. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Rothman,et al.  Molecular dissection of the secretory pathway , 1992, Nature.

[41]  J. Scholey,et al.  Motor proteins in cell division. , 1991, Trends in cell biology.

[42]  C. Der,et al.  Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments , 1991, The Journal of cell biology.

[43]  P. Sluijs,et al.  The small GTP-binding protein rab4 is associated with early endosomes. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Thomas C. Südhof,et al.  Proteins of synaptic vesicles involved in exocytosis and membrane recycling , 1991, Neuron.

[45]  R. Vale,et al.  Cell cycle control of microtubule-based membrane transport and tubule formation in vitro , 1991, The Journal of cell biology.

[46]  K. Wilson,et al.  A lamin-independent pathway for nuclear envelope assembly , 1990, The Journal of cell biology.

[47]  M. Zerial,et al.  Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments , 1990, Cell.

[48]  J. Rothman,et al.  SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast , 1990, Cell.

[49]  Y. Clermont,et al.  Three-dimensional electron microscopy: structure of the Golgi apparatus. , 1990, European journal of cell biology.

[50]  J. White,et al.  Viral and cellular membrane fusion proteins. , 1990, Annual review of physiology.

[51]  F E Bloom,et al.  The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations , 1989, The Journal of cell biology.

[52]  E. Berger,et al.  Mitotic Golgi fragments in HeLa cells and their role in the reassembly pathway , 1989, The Journal of cell biology.

[53]  J. Rothman,et al.  Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack , 1989, Cell.

[54]  J. Rothman,et al.  Vesicle fusion following receptor-mediated endocytosis requires a protein active in Golgi transport , 1989, Nature.

[55]  E. Chen,et al.  A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast , 1989, Nature.

[56]  E. Berger,et al.  Reclustering of scattered Golgi elements occurs along microtubules. , 1989, European journal of cell biology.

[57]  S. McKnight,et al.  The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. , 1989, Science.

[58]  J. Lippincott-Schwartz,et al.  Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: Evidence for membrane cycling from Golgi to ER , 1989, Cell.

[59]  P. De Camilli,et al.  Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. , 1989, The EMBO journal.

[60]  J. Hyams,et al.  8 – General Cytology of Fission Yeasts , 1989 .

[61]  A. Nasim,et al.  Molecular biology of the fission yeast , 1989 .

[62]  H. Pelham Control of protein exit from the endoplasmic reticulum. , 1989, Annual review of cell biology.

[63]  K. Howell,et al.  Membrane traffic in endocytosis: insights from cell-free assays. , 1989, Annual review of cell biology.

[64]  J. Rothman,et al.  Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[65]  H. Hauri,et al.  Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus , 1988, The Journal of cell biology.

[66]  Benjamin S. Glick,et al.  Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack , 1988, Cell.

[67]  L. Chen,et al.  Dynamic behavior of endoplasmic reticulum in living cells , 1988, Cell.

[68]  S. Dabora,et al.  The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts , 1988, Cell.

[69]  C. Hutchison,et al.  The control of DNA replication in a cell-free extract that recapitulates a basic cell cycle in vitro. , 1988, Development.

[70]  N. Walworth,et al.  A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast , 1988, Cell.

[71]  H. Bourne Do GTPases direct membrane traffic in secretion? , 1988, Cell.

[72]  B. Storrie,et al.  Animal cell lysosomes rapidly exchange membrane proteins. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[73]  R. Scheller,et al.  VAMP-1: a synaptic vesicle-associated integral membrane protein. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[74]  J. Blow,et al.  Steps in the assembly of replication-competent nuclei in a cell-free system from Xenopus eggs , 1988, The Journal of cell biology.

[75]  L. Gerace,et al.  Functional organization of the nuclear envelope. , 1988, Annual review of cell biology.

[76]  T. Kreis,et al.  Translocation and clustering of endosomes and lysosomes depends on microtubules , 1987, The Journal of cell biology.

[77]  L. Hermo,et al.  Tridimensional structure of the Golgi apparatus of nonciliated epithelial cells of the ductuli efferentes in rat: an electron microscope stereoscopic study , 1987, Biology of the cell.

[78]  K. Simons,et al.  The trans Golgi network: sorting at the exit site of the Golgi complex. , 1986, Science.

[79]  U. Aebi,et al.  The nuclear lamina is a meshwork of intermediate-type filaments , 1986, Nature.

[80]  K. Fujiwara,et al.  Microtubules and the endoplasmic reticulum are highly interdependent structures , 1986, The Journal of cell biology.

[81]  J. Rothman,et al.  A new type of coated vesicular carrier that appears not to contain clathrin: Its possible role in protein transport within the Golgi stack , 1986, Cell.

[82]  R. Bolhuis,et al.  Cell-Cell Interactions , 2000 .

[83]  J. Thyberg,et al.  Microtubules and the organization of the Golgi complex. , 1985, Experimental cell research.

[84]  J. Rothman,et al.  Transport of protein between cytoplasmic membranes of fused cells: correspondence to processes reconstituted in a cell-free system , 1984, The Journal of cell biology.

[85]  J. Rothman,et al.  Intercompartmental transport in the Golgi complex is a dissociative process: facile transfer of membrane protein between two Golgi populations , 1984, The Journal of cell biology.

[86]  D. Albertini,et al.  A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation , 1984, The Journal of cell biology.

[87]  G. Warren,et al.  Newly synthesized G protein of vesicular stomatitis virus is not transported to the cell surface during mitosis , 1983, The Journal of cell biology.

[88]  G. Palade,et al.  The Golgi apparatus (complex)-(1954-1981)-from artifact to center stage , 1981, The Journal of cell biology.

[89]  J. Rothman The golgi apparatus: two organelles in tandem. , 1981, Science.

[90]  B. Byers Cytology of the Yeast Life Cycle , 1981 .

[91]  S. H. Wollman,et al.  Mitosis in rat thyroid epithelial cells in vivo. I. Ultrastructural changes in cytoplasmic organelles during the mitotic cycle. , 1979, Journal of ultrastructure research.

[92]  G. Kreibich,et al.  Functional Specialization of Membrane-Bound Ribosomes in Eukaryotic Cells , 1976 .

[93]  G. Palade,et al.  Intracellular aspects of the process of protein synthesis. , 1975, Science.

[94]  G. Kreibich,et al.  Microsomal membranes and the translational apparatus of eukaryotic cells. , 1973, Federation proceedings.

[95]  G. Stein,et al.  TIME SEQUENCE OF NUCLEAR PORE FORMATION IN PHYTOHEMAGGLUTININ-STIMULATED LYMPHOCYTES AND IN HELA CELLS DURING THE CELL CYCLE , 1972, The Journal of cell biology.

[96]  Malcolm S. Steinberg,et al.  Reconstruction of Tissues by Dissociated Cells , 1963 .