Monte Carlo fixed-lag smoothing in state-space models

This paper presents an algorithm for Monte Carlo fixed-lag smoothing in state-space models de-fined by a diffusion process observed through noisy discrete-time measurements. Based on a par-ticles approximation of the filtering and smoothing distributions, the method relies on a simulation technique of conditioned diffusions. The proposed sequential smoother can be applied to general 5 non linear and multidimensional models, like the ones used in environmental applications. The smoothing of a turbulent flow in a high-dimensional context is given as a practical example.

[1]  Peter Jan van Leeuwen,et al.  Efficient fully nonlinear data assimilation for geophysical fluid dynamics , 2013, Comput. Geosci..

[2]  Bernard Delyon,et al.  Simulation of conditioned diffusions , 2006 .

[3]  P. Fearnhead,et al.  Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .

[4]  Jonathan R. Stroud,et al.  An Ensemble Kalman Filter and Smoother for Satellite Data Assimilation , 2010 .

[5]  N. Papadakis,et al.  Data assimilation with the weighted ensemble Kalman filter , 2010 .

[6]  É. Mémin,et al.  Weighted ensemble transform Kalman filter for image assimilation , 2013 .

[7]  Charles E. Clark,et al.  Monte Carlo , 2006 .

[8]  Brian Jefferies Feynman-Kac Formulae , 1996 .

[9]  Ying Sun,et al.  Geostatistics for Large Datasets , 2012 .

[10]  P. Fearnhead,et al.  Particle filters for partially observed diffusions , 2007, 0710.4245.

[11]  B. Delyon,et al.  Simulation of conditioned diffusion and application to parameter estimation , 2006 .

[12]  G. Roberts,et al.  Exact simulation of diffusions , 2005, math/0602523.

[13]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[14]  A. Gallant,et al.  Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes , 2002 .

[15]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[16]  J.M.C. Clark The simulation of pinned diffusions , 1990, 29th IEEE Conference on Decision and Control.

[17]  P. Protter,et al.  The Monte-Carlo method for filtering with discrete-time observations , 2001 .

[18]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[19]  A. Rollett,et al.  The Monte Carlo Method , 2004 .

[20]  Peter Jan,et al.  Particle Filtering in Geophysical Systems , 2009 .

[21]  A. Doucet,et al.  Smoothing algorithms for state–space models , 2010 .

[22]  A. Doucet,et al.  Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.

[23]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[24]  P. Bickel,et al.  Obstacles to High-Dimensional Particle Filtering , 2008 .

[25]  G. Evensen,et al.  An ensemble Kalman smoother for nonlinear dynamics , 2000 .

[26]  P. Leeuwen,et al.  Nonlinear data assimilation in geosciences: an extremely efficient particle filter , 2010 .