Bayesian Model Selection for Pathological Neuroimaging Data Applied to White Matter Lesion Segmentation

In neuroimaging studies, pathologies can present themselves as abnormal intensity patterns. Thus, solutions for detecting abnormal intensities are currently under investigation. As each patient is unique, an unbiased and biologically plausible model of pathological data would have to be able to adapt to the subject's individual presentation. Such a model would provide the means for a better understanding of the underlying biological processes and improve one's ability to define pathologically meaningful imaging biomarkers. With this aim in mind, this work proposes a hierarchical fully unsupervised model selection framework for neuroimaging data which enables the distinction between different types of abnormal image patterns without pathological a priori knowledge. Its application on simulated and clinical data demonstrated the ability to detect abnormal intensity clusters, resulting in a competitive to improved behavior in white matter lesion segmentation when compared to three other freely-available automated methods.

[1]  A. Kouzani,et al.  Segmentation of multiple sclerosis lesions in MR images: a review , 2011, Neuroradiology.

[2]  Hichem Snoussi,et al.  Penalized maximum likelihood for multivariate Gaussian mixture , 2002 .

[3]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[4]  D. Louis Collins,et al.  Trimmed-Likelihood Estimation for Focal Lesions and Tissue Segmentation in Multisequence MRI for Multiple Sclerosis , 2011, IEEE Transactions on Medical Imaging.

[5]  Wiro J. Niessen,et al.  White matter lesion extension to automatic brain tissue segmentation on MRI , 2009, NeuroImage.

[6]  April Khademi,et al.  Robust White Matter Lesion Segmentation in FLAIR MRI , 2012, IEEE Transactions on Biomedical Engineering.

[7]  R. He,et al.  Unified Approach for Multiple Sclerosis Lesion Segmentation on Brain MRI , 2006, Annals of Biomedical Engineering.

[8]  Grégoire Malandain,et al.  Hierarchical segmentation of multiple sclerosis lesions in multi-sequence MRI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[9]  D. Louis Collins,et al.  Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging , 2013, Medical Image Anal..

[10]  P. Scheltens,et al.  2001–2011: A Decade of the LADIS (Leukoaraiosis And DISability) Study: What Have We Learned about White Matter Changes and Small-Vessel Disease? , 2011, Cerebrovascular Diseases.

[11]  Abdel-Ouahab Boudraa,et al.  Automated segmentation of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering , 2000, Comput. Biol. Medicine.

[12]  G. Comi,et al.  Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. , 1997, Brain : a journal of neurology.

[13]  F. Fazekas,et al.  Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis , 2012, Journal of Neurology.

[14]  Zujun Hou,et al.  A Review on MR Image Intensity Inhomogeneity Correction , 2006, Int. J. Biomed. Imaging.

[15]  Robert Zivadinov,et al.  Improved assessment of multiple sclerosis lesion segmentation agreement via detection and outline error estimates , 2012, BMC Medical Imaging.

[16]  A. Evans,et al.  MRI simulation-based evaluation of image-processing and classification methods , 1999, IEEE Transactions on Medical Imaging.

[17]  Ying Wu,et al.  Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI , 2006, NeuroImage.

[18]  Meritxell Bach Cuadra,et al.  A multidimensional segmentation evaluation for medical image data , 2009, Comput. Methods Programs Biomed..

[19]  Wang Zhan,et al.  Characterization of white matter degeneration in elderly subjects by magnetic resonance diffusion and FLAIR imaging correlation , 2009, NeuroImage.

[20]  Yan Li,et al.  A split and merge EM algorithm for color image segmentation , 2009, 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems.

[21]  Koenraad Van Leemput,et al.  Automated model-based bias field correction of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[22]  Johan H. C. Reiber,et al.  Fully automatic segmentation of white matter hyperintensities in MR images of the elderly , 2005, NeuroImage.

[23]  Sébastien Ourselin,et al.  Bayesian Model Selection for Pathological Data , 2014, MICCAI.

[24]  Sébastien Ourselin,et al.  STEPS: Similarity and Truth Estimation for Propagated Segmentations and its application to hippocampal segmentation and brain parcelation , 2013, Medical Image Anal..

[25]  Pierre Hellier,et al.  STREM: A Robust Multidimensional Parametric Method to Segment MS Lesions in MRI , 2005, MICCAI.

[26]  Geoffrey E. Hinton,et al.  SMEM Algorithm for Mixture Models , 1998, Neural Computation.

[27]  Hayit Greenspan,et al.  Improved CSF classification and lesion detection in MR brain images with multiple sclerosis , 2007, SPIE Medical Imaging.

[28]  F. Fazekas,et al.  Discrimination of white matter lesions and multiple sclerosis plaques by short echo quantitative 1H—magnetic resonance spectroscopy , 2005, Journal of Neurology.

[29]  Patricia Svolos,et al.  T2 FLAIR artifacts at 3-T brain magnetic resonance imaging. , 2014, Clinical imaging.

[30]  Thomas Samaille,et al.  Automatic segmentation of age-related white matter changes on flair images: Method and multicentre validation , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[31]  Meritxell Bach Cuadra,et al.  A review of atlas-based segmentation for magnetic resonance brain images , 2011, Comput. Methods Programs Biomed..

[32]  Christian Barillot,et al.  Adaptive weighted fusion of multiple MR sequences for brain lesion segmentation , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[33]  Mark W. Woolrich,et al.  Linked independent component analysis for multimodal data fusion , 2011, NeuroImage.

[34]  M. Battaglini,et al.  Evaluating and reducing the impact of white matter lesions on brain volume measurements , 2012, Human brain mapping.

[35]  Hayit Greenspan,et al.  Multiple Sclerosis Lesion Detection Using Constrained GMM and Curve Evolution , 2009, Int. J. Biomed. Imaging.

[36]  Massimo Filippi,et al.  7. Mri Assessment of Iron Deposition in Multiple Sclerosis , 2022 .

[37]  Raúl Mohedano,et al.  On the Mahalanobis Distance Classification Criterion for Multidimensional Normal Distributions , 2013, IEEE Transactions on Signal Processing.

[38]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[39]  Peter A. Calabresi,et al.  A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions , 2010, NeuroImage.

[40]  Koenraad Van Leemput,et al.  Automated segmentation of multiple sclerosis lesions by model outlier detection , 2001, IEEE Transactions on Medical Imaging.

[41]  Marko Wilke,et al.  Manual, semi-automated, and automated delineation of chronic brain lesions: A comparison of methods , 2011, NeuroImage.

[42]  J Grimaud,et al.  Effect of training and different measurement strategies on the reproducibility of brain MRI lesion load measurements in multiple sclerosis , 1998, Neurology.

[43]  Bernhard Hemmer,et al.  An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis , 2012, NeuroImage.

[44]  Faith M. Gunning-Dixon,et al.  Aging of cerebral white matter: a review of MRI findings , 2009, International journal of geriatric psychiatry.

[45]  S. Sehlen,et al.  The value of T1-weighted images in the differentiation between MS, white matter lesions, and subcortical arteriosclerotic encephalopathy (SAE) , 2004, Neuroradiology.

[46]  Roger Tam,et al.  The association between cognitive function and white matter lesion location in older adults: A systematic review , 2012, Alzheimer's & Dementia.

[47]  K. Krishnan,et al.  Development of a semi-automated method for quantification of MRI gray and white matter lesions in geriatric subjects , 2002, Psychiatry Research: Neuroimaging.

[48]  Sébastien Ourselin,et al.  Global image registration using a symmetric block-matching approach , 2014, Journal of medical imaging.

[49]  Tien Yin Wong,et al.  Multi-stage segmentation of white matter hyperintensity, cortical and lacunar infarcts , 2012, NeuroImage.

[50]  Jun Zhang The mean field theory in EM procedures for Markov random fields , 1992, IEEE Trans. Signal Process..

[51]  Nicholas Ayache,et al.  Maximum Likelihood Estimation of the Bias Field in MR Brain Images: Investigating Different Modelings of the Imaging Process , 2001, MICCAI.

[52]  Farzad Towhidkhah,et al.  Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model , 2008, Comput. Biol. Medicine.

[53]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[54]  B. Ginneken,et al.  3D Segmentation in the Clinic: A Grand Challenge , 2007 .

[55]  Xinhua Zhuang,et al.  Gaussian mixture density modeling, decomposition, and applications , 1996, IEEE Trans. Image Process..

[56]  Rita Simões,et al.  Automatic segmentation of cerebral white matter hyperintensities using only 3D FLAIR images. , 2013, Magnetic resonance imaging.

[57]  Juan M. Górriz,et al.  Automatic ROI Selection in Structural Brain MRI Using SOM 3D Projection , 2014, PloS one.

[58]  Wiro J. Niessen,et al.  Changes in Normal-Appearing White Matter Precede Development of White Matter Lesions , 2013, Stroke.

[59]  Sterling C. Johnson,et al.  Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer's disease risk and aging studies , 2014, Human brain mapping.

[60]  Alex Rovira,et al.  Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches , 2012, Inf. Sci..

[61]  Nick C Fox,et al.  Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration , 2013, The Lancet Neurology.

[62]  Owen Carmichael,et al.  FLAIR and Diffusion MRI Signals Are Independent Predictors of White Matter Hyperintensities , 2013, American Journal of Neuroradiology.

[63]  Sébastien Ourselin,et al.  Fast free-form deformation using graphics processing units , 2010, Comput. Methods Programs Biomed..

[64]  Marc Modat,et al.  LoAd: A locally adaptive cortical segmentation algorithm , 2011, NeuroImage.

[65]  Ronald M Peshock,et al.  Automated quantification of white matter disease extent at 3 T: Comparison with volumetric readings , 2012, Journal of magnetic resonance imaging : JMRI.

[66]  Dhanesh Ramachandram,et al.  Automatic white matter lesion segmentation using an adaptive outlier detection method. , 2012, Magnetic resonance imaging.

[67]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[68]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[69]  Thomas J. Hebert,et al.  Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm , 1998, IEEE Trans. Image Process..

[70]  J. MacFall,et al.  Classification of White Matter Lesions on Magnetic Resonance Imaging in Elderly Persons , 2008, Biological Psychiatry.

[71]  Jennifer L. Cuzzocreo,et al.  Segmentation of Brain Images Using Adaptive Atlases with Application to Ventriculomegaly , 2011, IPMI.

[72]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[73]  J A Maldjian,et al.  Automated White Matter Total Lesion Volume Segmentation in Diabetes , 2013, American Journal of Neuroradiology.

[74]  Reto Meuli,et al.  Robust parameter estimation of intensity distributions for brain magnetic resonance images , 1998, IEEE Transactions on Medical Imaging.

[75]  Jia Li Clustering Based on a Multilayer Mixture Model , 2005 .

[76]  Sébastien Ourselin,et al.  AdaPT: An adaptive preterm segmentation algorithm for neonatal brain MRI , 2013, NeuroImage.

[77]  Jussi Tohka,et al.  Robust MRI brain tissue parameter estimation by multistage outlier rejection , 2008, Magnetic resonance in medicine.

[78]  P. Scheltens,et al.  Impact of White Matter Hyperintensities Scoring Method on Correlations With Clinical Data: The LADIS Study , 2006, Stroke.

[79]  Robert Zivadinov,et al.  Brain iron accumulation in aging and neurodegenerative disorders , 2012, Expert review of neurotherapeutics.

[80]  Bilwaj Gaonkar,et al.  Automated segmentation of brain lesions by combining intensity and spatial information , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[81]  Max A. Viergever,et al.  Progression of Cerebral Atrophy and White Matter Hyperintensities in Patients With Type 2 Diabetes , 2010, Diabetes Care.