The statistics of Curie-Weiss models

LetSn denote the random total magnetization of ann-site Curie-Weiss model, a collection ofn (spin) random variables with an equal interaction of strength 1/n between each pair of spins. The asymptotic behavior for largen of the probability distribution ofSn is analyzed and related to the well-known (mean-field) thermodynamic properties of these models. One particular result is that at a type-k critical point (Sn-nm)/n1−1/2k has a limiting distribution with density proportional to exp[-λs2k/(2k)!], wherem is the mean magnetization per site and A is a positive critical parameter with a universal upper bound. Another result describes the asymptotic behavior relevant to metastability.

[1]  Elliott H. Lieb,et al.  Two-Dimensional Ising Model as a Soluble Problem of Many Fermions , 1964 .

[2]  W. J. Studden,et al.  Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .

[3]  John R. Rice,et al.  Tchebycheff Systems: With Applications in Analysis and Statistics (Samuel Karlin and William J. Studden) , 1967 .

[4]  Gérard G. Emch,et al.  Pure Thermodynamical Phases as Extremal KMS States , 1970 .

[5]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[6]  V. J. Emery,et al.  Ising Model for the ? Transition and Phase Separation in He^{3}-He^{4} Mixtures , 1971 .

[7]  Michael E. Fisher,et al.  Critical Exponents in 3.99 Dimensions , 1972 .

[8]  Colin J. Thompson,et al.  Mathematical Statistical Mechanics , 1972 .

[9]  Barry Simon,et al.  The (φ4)2 field theory as a classical Ising model , 1973 .

[10]  A. H. Stroud,et al.  Numerical Quadrature and Solution of Ordinary Differential Equations: A Textbook for a Beginning Course in Numerical Analysis , 1974 .

[11]  G. Jona-Lasinio,et al.  Limit theorems for multidimensional Markov processes , 1975 .

[12]  G. Gallavotti,et al.  The hierarchical model and the renormalization group , 1975 .

[13]  C. Newman,et al.  Multicomponent field theories and classical rotators , 1975 .

[14]  G. Jona-Lasinio Probabilistic Approach to Critical Behavior , 1977 .

[15]  C. Newman,et al.  Limit theorems for sums of dependent random variables occurring in statistical mechanics , 1978 .