Mathematical and numerical analysis of a simplified time-dependent viscoelastic flow

A time-dependent model corresponding to an Oldroyd-B viscoelastic fluid is considered, the convective terms being disregarded. Global existence in time is proved in Banach spaces provided the data are small enough, using the implicit function theorem and a maximum regularity property for a three fields Stokes problem. A finite element discretization in space is then proposed. Existence of the numerical solution is proved for small data, so as a priori error estimates, using again an implicit function theorem.

[1]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[2]  Boris Buffoni,et al.  Analytic theory of global bifurcation , 2003 .

[3]  Roger Pierre,et al.  On the discrete EVSS method , 2000 .

[4]  A. Machmoum,et al.  Finite element approximation of viscoelastic fluid flow using characteristics method , 2001 .

[5]  Marco Picasso,et al.  Mathematical analysis of a simplified Hookean dumbbells model arising from viscoelastic flows , 2006 .

[6]  E. Fernández-Cara,et al.  Mathematical Modeling and Analysis of Viscoelastic Fluids of the Oldroyd Kind , 2002 .

[7]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[8]  Sigurd B. Angenent,et al.  Nonlinear analytic semiflows , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  Manuel Laso,et al.  Numerical simulation of 3D viscoelastic flows with free surfaces , 2006, J. Comput. Phys..

[10]  Vincent J. Ervin,et al.  Approximation of Time-Dependent Viscoelastic Fluid Flow: SUPG Approximation , 2003, SIAM J. Numer. Anal..

[11]  Norbert Heuer,et al.  Approximation of time‐dependent, viscoelastic fluid flow: Crank‐Nicolson, finite element approximation , 2004 .

[12]  Giovanni P. Galdi,et al.  A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in W−1/q,q , 2005 .

[13]  Dominique Sandri Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds: continuous approximation of the stress , 1994 .

[14]  Michael Renardy Existence of slow steady flows of viscoelastic fluids of integral type , 1988 .

[15]  T N Phillips,et al.  Contemporary Topics in Computational Rheology , 2002 .

[16]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[17]  H. Giesekus A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility , 1982 .

[18]  Gabriella Di Blasio,et al.  Linear parabolic evolution equations inLp-spaces , 1984 .

[19]  P. Sobolevskiĭ,et al.  COERCIVENESS INEQUALITIES FOR ABSTRACT PARABOLIC EQUATIONS , 1964 .

[20]  R. Tanner,et al.  A new constitutive equation derived from network theory , 1977 .

[21]  K. Najib,et al.  On a decoupled algorithm for solving a finite element problem for the approximation of viscoelastic fluid flow , 1995 .

[22]  P. Lions,et al.  GLOBAL SOLUTIONS FOR SOME OLDROYD MODELS OF NON-NEWTONIAN FLOWS , 2000 .

[23]  Yoshikazu Giga The Stokes operator in $L_r$ spaces , 1981 .

[24]  Daisuke Fujiwara,et al.  An L_r-theorem of the Helmholtz decomposition of vector fields , 1977 .

[25]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[26]  F. Baaijens Mixed finite element methods for viscoelastic flow analysis : a review , 1998 .

[27]  Michel Fortin,et al.  On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows , 1989 .

[28]  P. Sobolevskiĭ,et al.  Fractional powers of coercive-positive sums of operators , 1977 .

[29]  G. Prato,et al.  Differential operators with non dense domain , 1987 .

[30]  J. Rappaz,et al.  Numerical analysis for nonlinear and bifurcation problems , 1997 .

[31]  Jacques Rappaz,et al.  Finite Dimensional Approximation of Non-Linear Problems .1. Branches of Nonsingular Solutions , 1980 .

[32]  J. Prüss Evolutionary Integral Equations And Applications , 1993 .

[33]  J. Baranger,et al.  Numerical analysis of a FEM for a transient viscoelastic flow , 1995 .

[34]  Andrea Bonito Analysis and numerical simulation of viscoelastic flows , 2006 .

[35]  R. Stenberg,et al.  GLS and EVSS methods for a three-field Stokes problem arising from viscoelastic flows , 2001 .

[36]  D. Sandri Analyse d'une formulation à trois champs du problème de Stokes , 1993 .

[37]  Eugenio Sinestrari,et al.  On the abstract Cauchy problem of parabolic type in spaces of continuous functions , 1985 .

[38]  R. Keunings MICRO-MACRO METHODS FOR THE MULTISCALE SIMULATION OF VISCOELASTIC FLOW USING MOLECULAR MODELS OF KINETIC THEORY , 2004 .

[39]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[40]  Giovanni Dore,et al.  Lp regularity for abstract differential equations , 1993 .

[41]  A. M. Zine,et al.  A new mixed finite element method for viscoelastic fluid flows , 2003 .

[42]  Jacques Baranger,et al.  Finite element approximation of viscoelastic fluid flow: Existence of approximate solutions and error bounds , 1992 .

[43]  Giovanni Dore,et al.  On the closedness of the sum of two closed operators , 1987 .

[44]  Marco Picasso,et al.  Finite element analysis of a simplified stochastic Hookean dumbbells model arising from viscoelastic flows , 2006 .

[45]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[46]  C. Simader,et al.  A new approach to the Helmholtz decomposition and the Neumann problem in Lq-spaces for bounded and e , 1992 .

[47]  Jacques Rappaz,et al.  Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows , 2001 .

[48]  Henri Paul Cartan Formes différentielles : applications élémentaires au calcul des variations et a la théorie des courbes et des surfaces , 1967 .

[49]  Hans Christian Öttinger,et al.  Stochastic Processes in Polymeric Fluids , 1996 .

[50]  J. Saut,et al.  Existence results for the flow of viscoelastic fluids with a differential constitutive law , 1990 .

[51]  V. A. Solonnikov,et al.  Estimates of the Solutions of a Nonstationary Linearized System of Navier-Stokes Equations , 1968 .