A Wavelet‐Based Approach to Identifying Structural Modal Parameters from Seismic Response and Free Vibration Data

This work presents the use of a discrete wavelet transform to determine the natural frequencies, damping ratios, and mode shapes of a structure from its free vibration or earthquake response data. The wavelet transform with orthonormal wavelets is applied to the measured acceleration responses of a structural system, and to reconstruct the discrete equations of motion in var- ious wavelet subspaces. The accuracy of this procedure is numerically confirmed; the effects of mother wavelet functions and noise on the ability to accurately estimate the dynamic characteristics are also investigated. The fea- sibility of the present procedure to elucidate real struc- tures is demonstrated through processing the measured responses of steel frames in shaking table tests and the free vibration responses of a five-span arch bridge with a total length of 440 m.

[1]  E. C. Mikulcik,et al.  A method for the direct identification of vibration parameters from the free response , 1977 .

[2]  Barbara Hubbard,et al.  The World According to Wavelets , 1996 .

[3]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[4]  Hojjat Adeli,et al.  Wavelet Packet‐Autocorrelation Function Method for Traffic Flow Pattern Analysis , 2004 .

[5]  Piotr Omenzetter,et al.  Identification of unusual events in multi-channel bridge monitoring data , 2004 .

[6]  Asim Karim,et al.  Fast Automatic Incident Detection on Urban and Rural Freeways Using Wavelet Energy Algorithm , 2003 .

[7]  Chi-Hung Huang,et al.  Modal identification of structures from ambient vibration, free vibration, and seismic response data via a subspace approach , 2001 .

[8]  M. Kobayashi Wavelets and their applications in industry , 2001 .

[9]  K. Park,et al.  Identification of Structural Dynamics Models Using Wavelet-Generated Impulse Response Data , 1998 .

[10]  David L. Brown,et al.  Parameter Estimation Techniques for Modal Analysis , 1979 .

[11]  Wim Sweldens,et al.  An Overview of Wavelet Based Multiresolution Analyses , 1994, SIAM Rev..

[12]  J. Lardies,et al.  On using the wavelet transform in modal analysis , 2001 .

[13]  Hani G. Melhem,et al.  Damage detection of structures by wavelet analysis , 2004 .

[14]  Tomoo Saito,et al.  Evaluation of dynamic characteristics of high-rise buildings using system identification techniques , 1996 .

[15]  E. Şafak,et al.  Seismic Response of Transamerica Building. II: System Identification , 1991 .

[16]  Massimo Ruzzene,et al.  NATURAL FREQUENCIES AND DAMPINGS IDENTIFICATION USING WAVELET TRANSFORM: APPLICATION TO REAL DATA , 1997 .

[17]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Daniel Coca,et al.  Non-linear system identification using wavelet multiresolution models , 2001 .

[19]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[20]  A. Swindlehurst,et al.  Subspace-based signal analysis using singular value decomposition , 1993, Proc. IEEE.

[21]  K. Park,et al.  Extraction of Impulse Response Data via Wavelet Transform for Structural System Identification , 1998 .

[22]  Richard Russell,et al.  A Multi-Input Modal Estimation Algorithm for Mini-Computers , 1982 .

[23]  Patrick Flandrin,et al.  Wavelets and related time-scale transforms , 1990 .

[24]  Steve A. Billings,et al.  Identification of Time-Varying Systems Using Multiresolution Wavelet Models , 2003 .

[25]  Joseph Lardies,et al.  Identification of modal parameters using the wavelet transform , 2002 .

[26]  R. Ghanem,et al.  A wavelet-based approach for model and parameter identification of non-linear systems , 2001 .

[27]  D. A. Schoenwald System identification using a wavelet-based approach , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[28]  M. Todorovska,et al.  REPRESENTATION AND COMPRESSION OF STRUCTURAL VIBRATION MONITORING DATA USING WAVELETS AS A TOOL IN DATA MINING , 2002 .

[29]  G. Strang Wavelet transforms versus Fourier transforms , 1993, math/9304214.

[30]  Harold H. Szu,et al.  Review of wavelet transforms for pattern recognitions , 1996, Defense + Commercial Sensing.

[31]  Philippe Tchamitchian,et al.  Wavelets : time-frequency methods and phase space : proceedings of the international conference, Marseille, France, December 14-18, 1987 , 1989 .

[32]  Hojjat Adeli,et al.  Time‐Frequency Signal Analysis of Earthquake Records Using Mexican Hat Wavelets , 2003 .

[33]  S. G. Mallat Multiresolution Approach to Wavelets in Computer Vision , 1990 .

[34]  Chin-Hsiung Loh,et al.  Application of off-line and on-line identification techniques to building seismic response data , 1996 .

[35]  Gregory W. Reich,et al.  Structural system identification: from reality to models , 2003 .