Partwise Cross-Parameterization via Nonregular Convex Hull Domains

In this paper, we propose a novel partwise framework for cross-parameterization between 3D mesh models. Unlike most existing methods that use regular parameterization domains, our framework uses nonregular approximation domains to build the cross-parameterization. Once the nonregular approximation domains are constructed for 3D models, different (and complex) input shapes are transformed into similar (and simple) shapes, thus facilitating the cross-parameterization process. Specifically, a novel nonregular domain, the convex hull, is adopted to build shape correspondence. We first construct convex hulls for each part of the segmented model, and then adopt our convex-hull cross-parameterization method to generate compatible meshes. Our method exploits properties of the convex hull, e.g., good approximation ability and linear convex representation for interior vertices. After building an initial cross-parameterization via convex-hull domains, we use compatible remeshing algorithms to achieve an accurate approximation of the target geometry and to ensure a complete surface matching. Experimental results show that the compatible meshes constructed are well suited for shape blending and other geometric applications.

[1]  Yizhou Yu Laplacian Guided Editing, Synthesis, and Simulation , 2007 .

[2]  Daniel Cohen-Or,et al.  Salient geometric features for partial shape matching and similarity , 2006, TOGS.

[3]  Alla Sheffer,et al.  Model Composition from Interchangeable Components , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[4]  Marc Alexa,et al.  FiberMesh: designing freeform surfaces with 3D curves , 2007, ACM Trans. Graph..

[5]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[6]  Cheng-Chung Lin,et al.  Consistent parametrization by quinary subdivision for remeshing and mesh metamorphosis , 2003, GRAPHITE '03.

[7]  Thomas A. Funkhouser,et al.  Consistent segmentation of 3D models , 2009, Comput. Graph..

[8]  Ligang Liu,et al.  Easy Mesh Cutting , 2006, Comput. Graph. Forum.

[9]  Chunhong Pan,et al.  A Novel Scheme for Efficient Cross-Parameterization , 2007 .

[10]  Bernard Chazelle,et al.  Strategies for polyhedral surface decomposition: an experimental study , 1995, SCG '95.

[11]  Ross T. Whitaker,et al.  Partitioning 3D Surface Meshes Using Watershed Segmentation , 1999, IEEE Trans. Vis. Comput. Graph..

[12]  Christian Rössl,et al.  Harmonic Guidance for Surface Deformation , 2005, Comput. Graph. Forum.

[13]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[14]  Marc Alexa,et al.  Recent Advances in Mesh Morphing , 2002, Comput. Graph. Forum.

[15]  Nina Amenta,et al.  Feature-driven deformation for dense correspondence , 2009, Medical Imaging.

[16]  Daniel Cohen-Or,et al.  Consistent mesh partitioning and skeletonisation using the shape diameter function , 2008, The Visual Computer.

[17]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[18]  Zoran Popovic,et al.  The space of human body shapes: reconstruction and parameterization from range scans , 2003, ACM Trans. Graph..

[19]  Marc Alexa,et al.  FiberMesh: designing freeform surfaces with 3D curves , 2007, SIGGRAPH 2007.

[20]  Hongbin Zha,et al.  Model Transduction for Triangle Meshes , 2010, Journal of Computer Science and Technology.

[21]  Nancy M. Amato,et al.  Approximate convex decomposition of polyhedra and its applications , 2008, Comput. Aided Geom. Des..

[22]  Szymon Rusinkiewicz,et al.  Modeling by example , 2004, ACM Trans. Graph..

[23]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[24]  Ayellet Tal,et al.  Mesh segmentation using feature point and core extraction , 2005, The Visual Computer.

[25]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[26]  Olga Sorkine-Hornung,et al.  Differential Representations for Mesh Processing , 2006, Comput. Graph. Forum.

[27]  T. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.

[28]  Alla Sheffer,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, ACM Trans. Graph..

[29]  Songde Ma,et al.  A sketch-based interactive framework for real-time mesh segmentation , 2007 .

[30]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..

[31]  Gabriel Taubin,et al.  Estimating the tensor of curvature of a surface from a polyhedral approximation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[32]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[33]  Helmut Pottmann,et al.  The Isophotic Metric and Its Application to Feature Sensitive Morphology on Surfaces , 2004, ECCV.

[34]  Ayellet Tal,et al.  Metamorphosis of Polyhedral Surfaces using Decomposition , 2002, Comput. Graph. Forum.

[35]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[36]  Xulei Wang,et al.  Global and local isometry-invariant descriptor for 3D shape comparison and partial matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  Hans-Peter Seidel,et al.  Mesh scissoring with minima rule and part salience , 2005, Comput. Aided Geom. Des..

[38]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[39]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[40]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[41]  Hugues Hoppe,et al.  Inter-surface mapping , 2004, ACM Trans. Graph..

[42]  Leonidas J. Guibas,et al.  Non-Rigid Registration Under Isometric Deformations , 2008 .

[43]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[44]  Satoshi Matsuoka,et al.  Teddy: A Sketching Interface for 3D Freeform Design , 1999, SIGGRAPH Courses.

[45]  Mauro R. Ruggeri,et al.  Spectral-Driven Isometry-Invariant Matching of 3D Shapes , 2010, International Journal of Computer Vision.

[46]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[47]  Ligang Liu,et al.  Manifold Parameterization , 2006, Computer Graphics International.

[48]  Daniel Cohen-Or,et al.  Deformation‐Driven Shape Correspondence , 2008, Comput. Graph. Forum.

[49]  Peter Schröder,et al.  Consistent mesh parameterizations , 2001, SIGGRAPH.

[50]  Alla Sheffer,et al.  Model Composition from Interchangeable Components , 2007 .

[51]  Tao Ju,et al.  Mean value coordinates for closed triangular meshes , 2005, ACM Trans. Graph..

[52]  Chunhong Pan,et al.  Consistent Correspondence between Arbitrary Manifold Surfaces , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[53]  Youyi Zheng,et al.  Mesh Decomposition with Cross‐Boundary Brushes , 2010, Comput. Graph. Forum.