Leakage sources and possible solutions in nanometer CMOS technologies

Until recent years, dynamic power dissipation contributed the most to the chip's total power dissipation in CMOS digital circuits thus much attention was given to reduce this dynamic power. But as technology advances into the sub-100 nm regime, leakage power dissipation, which is a static power, increases at a much faster rate than dynamic power and it is expected to dominate the chips' total power dissipation. According to the 2004 update of the International Technology Roadmap for Semiconductors (ITRS), the required reduction of dynamic power beyond the reduction already given by technology scaling for a System-On-Chip (SOC) will grow from 0.1 in 2005 up to 8.1 reduction in 2018; at the same time the required reduction of a SOC standby power will exponentially grow from 2.4 in 2005 up to 232 in 20181.

[1]  David Blaauw,et al.  Robust SAT-Based Search Algorithm for Leakage Power Reduction , 2002, PATMOS.

[2]  Arthur H. M. van Roermund,et al.  Ultra-low standby-currents for deep sub-micron VLSI CMOS circuits: smart series switch , 2000, ISCAS.

[3]  K. Roy,et al.  Double gate dynamic threshold voltage (DGDT) SOI MOSFETs for low power high performance designs , 1997, 1997 IEEE International SOI Conference Proceedings.

[4]  Kaushik Roy,et al.  Dynamic V/sub TH/ scaling scheme for active leakage power reduction , 2002, Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition.

[5]  Dennis Sylvester,et al.  A new asymmetric skewed buffer design for runtime leakage power reduction , 2005, 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design.

[6]  Massoud Pedram,et al.  Leakage current reduction in CMOS VLSI circuits by input vector control , 2004, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[7]  Narayanan Vijaykrishnan,et al.  Evaluating run-time techniques for leakage power reduction , 2002, Proceedings of ASP-DAC/VLSI Design 2002. 7th Asia and South Pacific Design Automation Conference and 15h International Conference on VLSI Design.

[8]  Takayasu Sakurai,et al.  Boosted gate MOS (BGMOS): device/circuit cooperation scheme to achieve leakage-free giga-scale integration , 2000, Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044).

[9]  Mark C. Johnson,et al.  Estimation of standby leakage power in CMOS circuits considering accurate modeling of transistor stacks , 1998, ISLPED '98.

[10]  Kaushik Roy,et al.  Dynamic VTH Scaling Scheme for Active Leakage Power Reduction , 2002, DATE.

[11]  J. Colinge Silicon-on-Insulator Technology: Materials to VLSI , 1991 .

[12]  G.E. Moore,et al.  No exponential is forever: but "Forever" can be delayed! [semiconductor industry] , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[13]  Mark C. Johnson,et al.  Models and algorithms for bounds on leakage in CMOS circuits , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Shin'ichiro Mutoh,et al.  1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS , 1995, IEEE J. Solid State Circuits.

[15]  Josep L. Rosselló,et al.  Accurate modelling of leakage currents in nanometre CMOS technologies , 2005 .

[16]  William J. Bowhill,et al.  Design of High-Performance Microprocessor Circuits , 2001 .

[17]  Joao Marques-Silva,et al.  GRASP: A Search Algorithm for Propositional Satisfiability , 1999, IEEE Trans. Computers.

[18]  Chenming Hu,et al.  MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations , 2003 .

[19]  Kaushik Roy,et al.  Modeling and estimation of leakage in sub-90 nm devices , 2004, 17th International Conference on VLSI Design. Proceedings..

[20]  Mark C. Johnson,et al.  Leakage control with efficient use of transistor stacks in single threshold CMOS , 2002, IEEE Trans. Very Large Scale Integr. Syst..

[21]  T. Fujita,et al.  A 0.9 V 150 MHz 10 mW 4 mm/sup 2/ 2-D discrete cosine transform core processor with variable-threshold-voltage scheme , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[22]  Igor L. Markov,et al.  PBS: A Backtrack-Search Pseudo-Boolean Solver and Optimizer , 2000 .

[23]  Richard B. Brown,et al.  Efficient techniques for gate leakage estimation , 2003, ISLPED '03.

[24]  James Kao,et al.  Subthreshold leakage modeling and reduction techniques , 2002, ICCAD 2002.

[25]  J. Colinge Silicon-on-Insulator Technology , 1991 .

[26]  Xiaowei Li,et al.  A maximum total leakage current estimation method , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[27]  A.P. Chandrakasan,et al.  Dual-threshold voltage techniques for low-power digital circuits , 2000, IEEE Journal of Solid-State Circuits.

[28]  Mahmut T. Kandemir,et al.  Leakage Current: Moore's Law Meets Static Power , 2003, Computer.

[29]  Hiroshi Kawaguchi,et al.  VTH-hopping scheme to reduce subthreshold leakage for low-power processors , 2002, IEEE J. Solid State Circuits.

[30]  A. Matsuzawa,et al.  A low power data holding circuit with an intermittent power supply scheme for sub-1V MT-CMOS LSIs , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[31]  藤田 哲也,et al.  A 0.9V 150MHz 10mW 4mm^2 2-D Discrete Cosine Transform Core Processor with Variable Threshold-Voltage (VT) Scheme , 1996 .

[32]  Saibal Mukhopadhyay,et al.  Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits , 2003, Proc. IEEE.

[33]  Vivek De,et al.  Technology and design challenges for low power and high performance [microprocessors] , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[34]  Vivek De,et al.  A new technique for standby leakage reduction in high-performance circuits , 1998, 1998 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.98CH36215).

[35]  Farid N. Najm,et al.  A gate-level leakage power reduction method for ultra-low-power CMOS circuits , 1997, Proceedings of CICC 97 - Custom Integrated Circuits Conference.

[36]  T. Douseki,et al.  A sub-1 V triple-threshold CMOS/SIMOX circuit for active power reduction , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[37]  Kouichi Kumagai,et al.  A novel powering-down scheme for low Vt CMOS circuits , 1998, 1998 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.98CH36215).

[38]  Zhanping Chen,et al.  Estimation of standby leakage power in CMOS circuit considering accurate modeling of transistor stacks , 1998, Proceedings. 1998 International Symposium on Low Power Electronics and Design (IEEE Cat. No.98TH8379).

[39]  S. Borkar,et al.  Dynamic-sleep transistor and body bias for active leakage power control of microprocessors , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[40]  T. Sakurai,et al.  A CMOS scheme for 0.5 V supply voltage with pico-ampere standby current , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[41]  Ibrahim N. Hajj,et al.  Maximum leakage power estimation for CMOS circuits , 1999, Proceedings IEEE Alessandro Volta Memorial Workshop on Low-Power Design.

[42]  Joel Grodstein,et al.  Symbolic failure analysis of complex CMOS circuits due to excessive leakage current and charge sharing , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[43]  David Blaauw,et al.  Gate oxide leakage current analysis and reduction for VLSI circuits , 2004, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[44]  A. Ono,et al.  A 100 nm node CMOS technology for practical SOC application requirement , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).