Real Liouvillian Extensions of Partial Differential Fields

In this paper, we establish Galois theory for partial differential systems defined over formally real differential fields with a real closed field of constants and over formally p-adic differential fields with a p-adically closed field of constants. For an integrable partial differential system defined over such a field, we prove that there exists a formally real (resp. formally p-adic) Picard-Vessiot extension. Moreover, we obtain a uniqueness result for this Picard-Vessiot extension. We give an adequate definition of the Galois differential group and obtain a Galois fundamental theorem in this setting. We apply the obtained Galois correspondence to characterise formally real Liouvillian extensions of real partial differential fields with a real closed field of constants by means of split solvable linear algebraic groups. We present some examples of real dynamical systems and indicate some possibilities of further development of algebraic methods in real dynamical systems.

[1]  Marius van der Put,et al.  Galois Theory of Linear Differential Equations , 2012 .

[2]  Jacques-Arthur Weil,et al.  Differential Galois Theory and Integration , 2021, Texts & Monographs in Symbolic Computation.

[3]  E. R. Kolchin,et al.  Algebraic Matric Groups and the Picard-Vessiot Theory of Homogeneous Linear Ordinary Differential Equations , 1948 .

[4]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[5]  Jean-Pierre Chauveau,et al.  Esquisse d'un programme , 1982 .

[6]  Marius van der Put,et al.  Real and p-adic Picard–Vessiot fields , 2013, Mathematische Annalen.

[7]  Z. Hajto,et al.  Tame topology and non-integrability of dynamical systems. , 2020, 2008.12074.

[8]  Peter Roquette,et al.  Formally P-Adic Fields , 1984 .

[9]  Arnold‐Thom Gradient Conjecture for the Arrival Time , 2017, Communications on Pure and Applied Mathematics.

[10]  T. Crespo,et al.  Picard-vessiot theory and the Jacobian problem , 2011 .

[11]  Teresa Crespo,et al.  Algebraic Groups and Differential Galois Theory , 2011 .

[12]  Marie Schmidt Lectures On Formally Real Fields , 2016 .

[13]  M. Przybylska,et al.  Differential Galois Theory and Integrability , 2009, 0912.1046.

[14]  Anand Pillay,et al.  Interpretations and differential Galois extensions , 2014 .

[15]  J. Cassels LECTURES ON FORMALLY REAL FIELDS (Lecture Notes in Mathematics, 1093) , 1985 .

[16]  T. Crespo,et al.  Real Liouville Extensions , 2012, 1206.2283.

[17]  Uniwersytet Jagielloński,et al.  ON SEMI-ANALYTIC AND SUBANALYTIC GEOMETRY , 2013 .

[18]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[19]  Alexey Ovchinnikov,et al.  Parameterized Picard-Vessiot extensions and Atiyah extensions , 2013 .

[20]  K. Kurdyka,et al.  Proof of the gradient conjecture of R. Thom , 1999, math/9906212.

[21]  E. Kolchin Picard-Vessiot theory of partial differential fields , 1952 .

[22]  Teresa Crespo,et al.  Galois Correspondence Theorem for Picard-Vessiot Extensions , 2015, 1502.08026.

[23]  F. Murnaghan,et al.  LINEAR ALGEBRAIC GROUPS , 2005 .