The limiting current for reduction of ferricyanide ion at nickel: The importance of experimental conditions

Steady state, hydrodynamic voltammetry is a well established technique to measure the rate of mass transport of an electroactive species to, or from, a solid surface electrode in an aqueous electrolyte. Limiting current measurements during the reduction of ferricyanide (hexacyanoferrateIII) ion at a nickel rotating disc electrode (RDE) are critically considered, and the accuracy of the technique is quantitatively assessed. The importance of surface pretreatment, type of indifferent electrolyte, and the effect of sunlight are considered. Limiting current values can show large deviations from the values predicted by the Levich equation for laminar flow to a polished RDE when unsuitable conditions are employed, despite the appearance of well-defined limiting current plateaux. Using appropriate pretreatment and experimental procedures, the averaged mass transport coefficients or limiting currents values can be obtained, which are close to the values predicted by the Levich equation for laminar flow to a hydrodynamic smooth RDE.

[1]  C. Low,et al.  Strategies for the determination of the convective-diffusion limiting current from steady state linear sweep voltammetry , 2007 .

[2]  Roshan Jeet Jee Jachuck,et al.  Determination of liquid–solid mass transfer coefficients for a spinning disc reactor using a limiting current technique , 2005 .

[3]  F. Walsh,et al.  Mass transport in the rectangular channel of a filter-press electrolyzer (the FM01-LC reactor) , 2005 .

[4]  Jack Legrand,et al.  Entrance effect on mass transfer in a parallel plate electrochemical reactor , 2001 .

[5]  R. Field,et al.  On the determination of limiting current density from uncertain data , 2000 .

[6]  M. Darwish,et al.  Liquid-solid mass transfer behaviour of rotating screen discs , 2000 .

[7]  J. Dawson,et al.  Mass transfer enhancement associated with sudden flow expansion , 1996 .

[8]  T. I. Quickenden,et al.  Toward a Reliable Value for the Diffusion Coefficient of Cupric Ion in Aqueous Solution , 1996 .

[9]  W. M. Taama,et al.  Influence of supporting electrolyte on ferricyanide reduction at a rotating disc electrode , 1996 .

[10]  W. M. Taama,et al.  Mass transfer rates in a DEM electrochemical cell , 1996 .

[11]  J. Legrand,et al.  Application of metallic foams in electrochemical reactors of the filter-press type: Part II Mass transfer performance , 1994 .

[12]  F. Walsh,et al.  Studies of three-dimensional electrodes in the FMO1-LC laboratory electrolyser , 1994 .

[13]  D. Robinson,et al.  Local mass transport effects in the FM01 laboratory electrolyser , 1992 .

[14]  Derek Pletcher,et al.  A First Course in Electrode Processes , 1991 .

[15]  Wolfgang Riedel,et al.  ELECTROLESS NICKEL PLATING , 2007 .

[16]  J. M. Marracino,et al.  A first investigation of flow-through porous electrodes made of metallic felts or foams , 1987 .

[17]  R. Alkire SPECIAL REVIEW TRANSPORT PROCESSES IN ELECTROCHEMICAL SYSTEMS , 1985 .

[18]  D. Pletcher,et al.  The Oxidation of Alcohols at a Nickel Anode in Alkaline t‐Butanol/Water Mixtures , 1977 .

[19]  J. Newman Schmidt Number Correction for the Rotating Disk , 1966 .

[20]  M. Eisenberg,et al.  Ionic Mass Transfer and Concentration Polarization at Rotating Electrodes , 1953 .

[21]  O. R. Mattos,et al.  The Modulated Flow at a Rotating Hemispherical Electrode , 2001 .

[22]  F. Walsh,et al.  Studies of space-averaged mass transport in the FM01-LC laboratory electrolyser , 1993 .

[23]  Frank C. Walsh,et al.  A first course in electrochemical engineering , 1993 .

[24]  D. Gabe,et al.  Porosity of Electrodeposited Coatings: Its Cause, Nature, Effect and Management , 1992 .

[25]  L. Brown Electroless nickel plating , 1992 .

[26]  A. Ziai,et al.  Optimisation of experimental conditions for electrochemical mass transfer measurements , 1983 .

[27]  J. Robert Selman,et al.  Mass-Transfer Measurements by the Limiting-Current Technique , 1978 .

[28]  H. E. WATSON,et al.  Industrial Electrochemistry , 1941, Nature.