Activity of gut proteinases from Cry1Ab-selected colonies of the European corn borer, Ostrinia nubilalis (Lepidoptera: Crambidae).
暂无分享,去创建一个
[1] B. Siegfried,et al. Cross-Resistance of Cry1Ab-Selected Ostrinia nubilalis (Lepidoptera: Crambidae) to Bacillus thuringiensis δ-Endotoxins , 2004, Journal of economic entomology.
[2] L. Bulla,et al. Insect Resistance to Bacillus thuringiensis , 2003, Molecular & Cellular Proteomics.
[3] L. Bulla,et al. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins. , 2002, Insect biochemistry and molecular biology.
[4] M. Soberón,et al. Cadherin‐like receptor binding facilitates proteolytic cleavage of helix α‐1 in domain I and oligomer pre‐pore formation of Bacillus thuringiensis Cry1Ab toxin , 2002, FEBS letters.
[5] B. Siegfried,et al. Chronic Exposure of the European Corn Borer (Lepidoptera: Crambidae) to Cry1Ab Bacillus thuringiensis Toxin , 2001, Journal of economic entomology.
[6] A. Bravo,et al. Processing of Cry1Ab delta-endotoxin from Bacillus thuringiensis by Manduca sexta and Spodoptera frugiperda midgut proteases: role in protoxin activation and toxin inactivation. , 2001, Insect Biochemistry and Molecular Biology.
[7] S. Herrero,et al. Different Mechanisms of Resistance toBacillus thuringiensis Toxins in the Indianmeal Moth , 2001, Applied and Environmental Microbiology.
[8] Juan Luis Jurat-Fuentes,et al. Binding Analyses of Bacillus thuringiensis Cry δ-Endotoxins Using Brush Border Membrane Vesicles of Ostrinia nubilalis , 2001, Applied and Environmental Microbiology.
[9] D. Ellar,et al. Role of Proteolysis in Determining Potency ofBacillus thuringiensis Cry1Ac δ-Endotoxin , 2000, Applied and Environmental Microbiology.
[10] K. Zhu,et al. Comparison of Midgut Proteinases in Bacillus thuringiensis-Susceptible and -Resistant European Corn Borer, Ostrinia nubilalis (Lepidoptera; Pyralidae) , 1999 .
[11] D. Andow,et al. Long-term selection for resistance to Bacillus thuringiensis Cry1Ac endotoxin in a Minnesota population of European corn borer (Lepidoptera : Crambidae) , 1999 .
[12] L. Young,et al. Baseline Susceptibility of European Corn Borer (Lepidoptera: Crambidae) to Bacillus thuringiensis Toxins , 1999 .
[13] N. Crickmore,et al. Bacillus thuringiensis and Its Pesticidal Crystal Proteins , 1998, Microbiology and Molecular Biology Reviews.
[14] Ziniu Yu,et al. Processing of δ-Endotoxin ofBacillus thuringiensissubsp.kurstakiHD-1 inHeliothis armigeraMidgut Juice and the Effects of Protease Inhibitors , 1998 .
[15] R. Higgins,et al. Baseline Susceptibility and Changes in Susceptibility to Bacillus thuringiensis subsp. kurstaki Under Selection Pressure in European Corn Borer (Lepidoptera: Pyralidae) , 1997 .
[16] R. Beeman,et al. Proteinase-mediated Insect Resistance to Bacillus thuringiensis Toxins* , 1997, The Journal of Biological Chemistry.
[17] K. Kramer,et al. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin. , 1996, Insect biochemistry and molecular biology.
[18] J. Van Rie,et al. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. , 1995, Annual review of entomology.
[19] Leah S. Bauer,et al. RESISTANCE: A THREAT TO THE INSECTICIDAL CRYSTAL PROTEINS OF BACILLUS THURINGIENSIS , 1995 .
[20] D. Andow,et al. Egg Weight, Fecundity, and Longevity Are Increased by Adult Feeding in Ostrinia nubilalis (Lepidoptera: Pyralidae) , 1994 .
[21] K. Kramer,et al. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. , 1994, Biochemical and biophysical research communications.
[22] S. Gill,et al. In vitro and in vivo proteolysis of the Bacillus thuringiensis subsp. israelensis CryIVD protein by Culex quinquefasciatus larval midgut proteases. , 1993, Insect biochemistry and molecular biology.
[23] F. Gould,et al. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[24] H. Preisler,et al. Pesticide Bioassays With Arthropods , 1991 .
[25] B. Tabashnik,et al. Field Development of Resistance to Bacillus thuringiensis in Diamondback Moth (Lepidoptera: Plutellidae) , 1990 .
[26] K. Kramer,et al. Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella: comparison of midgut proteinases from susceptible and resistant larvae. , 1990, Journal of invertebrate pathology.
[27] H. R. Whiteley,et al. Insecticidal crystal proteins of Bacillus thuringiensis. , 1989, Microbiological reviews.
[28] B. H. Knowles,et al. Specificity of Bacillus thuringiensis var. colmeri insecticidal delta-endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases. , 1986, European journal of biochemistry.
[29] P. K. Smith,et al. Measurement of protein using bicinchoninic acid. , 1985, Analytical biochemistry.
[30] G. Hartley,et al. Large-scale Rearing of a Sterile Backcross of the Tobacco Budworm (Lepidoptera: Noctuidae) , 1985 .
[31] W. H. Mcgaughey,et al. Insect Resistance to the Biological Insecticide Bacillus thuringiensis , 1985, Science.
[32] N. Savin,et al. A Critical Evaluation of Bioassay in Insecticide Research: Likelihood Ratio Tests of Dose-Mortality Regression , 1977 .
[33] Z. Shao,et al. Processing of delta-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors. , 1998, Journal of invertebrate pathology.
[34] E. Alcácer,et al. DIFFERENCES IN THE MIDGUT PROTEOLYTIC ACTIVITY OF TWO HELIOTHIS VIRESCENS STRAINS, ONE SUSCEPTIBLE AND ONE RESISTANT TO BACILLUS THURINGIENSIS TOXINS , 1996 .
[35] B. Tabashnik,et al. Evolution of Resistance to Bacillus Thuringiensis , 1994 .
[36] S. Gill,et al. The mode of action of Bacillus thuringiensis endotoxins. , 1992, Annual review of entomology.
[37] Hongxia Zhao,et al. [Digestive enzymes]. , 1954, Sbornik pro pathofysiologii traveni a vyzivy; gastroenterologia bohema.