Activity of gut proteinases from Cry1Ab-selected colonies of the European corn borer, Ostrinia nubilalis (Lepidoptera: Crambidae).

Susceptibility to the Cry1Ab protoxin and toxin from Bacillus thuringiensis (Berliner) and activity of gut proteinases were assessed in both susceptible and Cry1Ab-selected colonies of European corn borer, Ostrinia nubilalis (Hubner). Resistance in two different selected colonies was at least 6- and 15-fold for the Cry1Ab protoxin and 108- and 484-fold for the Cry1Ab toxin. Activities of trypsin-like, chymotrypsin-like and elastase-like proteinases were variable among the colonies tested and not indicative of a major contribution to Cry1Ab resistance. Activation of the 130-kDa Cry1Ab protoxin occurred rapidly in all colonies, with no apparent differences among colonies. In addition, there were no apparent changes in activated Cry1Ab processing, indicating that proteolytic degradation was not associated with resistance. These results suggest that mechanisms other than proteolytic activation of protoxin and toxin degradation, such as target site modification may be involved in the resistance to B thuringiensis Cry1Ab in these O nubilalis colonies.

[1]  B. Siegfried,et al.  Cross-Resistance of Cry1Ab-Selected Ostrinia nubilalis (Lepidoptera: Crambidae) to Bacillus thuringiensis δ-Endotoxins , 2004, Journal of economic entomology.

[2]  L. Bulla,et al.  Insect Resistance to Bacillus thuringiensis , 2003, Molecular & Cellular Proteomics.

[3]  L. Bulla,et al.  Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins. , 2002, Insect biochemistry and molecular biology.

[4]  M. Soberón,et al.  Cadherin‐like receptor binding facilitates proteolytic cleavage of helix α‐1 in domain I and oligomer pre‐pore formation of Bacillus thuringiensis Cry1Ab toxin , 2002, FEBS letters.

[5]  B. Siegfried,et al.  Chronic Exposure of the European Corn Borer (Lepidoptera: Crambidae) to Cry1Ab Bacillus thuringiensis Toxin , 2001, Journal of economic entomology.

[6]  A. Bravo,et al.  Processing of Cry1Ab delta-endotoxin from Bacillus thuringiensis by Manduca sexta and Spodoptera frugiperda midgut proteases: role in protoxin activation and toxin inactivation. , 2001, Insect Biochemistry and Molecular Biology.

[7]  S. Herrero,et al.  Different Mechanisms of Resistance toBacillus thuringiensis Toxins in the Indianmeal Moth , 2001, Applied and Environmental Microbiology.

[8]  Juan Luis Jurat-Fuentes,et al.  Binding Analyses of Bacillus thuringiensis Cry δ-Endotoxins Using Brush Border Membrane Vesicles of Ostrinia nubilalis , 2001, Applied and Environmental Microbiology.

[9]  D. Ellar,et al.  Role of Proteolysis in Determining Potency ofBacillus thuringiensis Cry1Ac δ-Endotoxin , 2000, Applied and Environmental Microbiology.

[10]  K. Zhu,et al.  Comparison of Midgut Proteinases in Bacillus thuringiensis-Susceptible and -Resistant European Corn Borer, Ostrinia nubilalis (Lepidoptera; Pyralidae) , 1999 .

[11]  D. Andow,et al.  Long-term selection for resistance to Bacillus thuringiensis Cry1Ac endotoxin in a Minnesota population of European corn borer (Lepidoptera : Crambidae) , 1999 .

[12]  L. Young,et al.  Baseline Susceptibility of European Corn Borer (Lepidoptera: Crambidae) to Bacillus thuringiensis Toxins , 1999 .

[13]  N. Crickmore,et al.  Bacillus thuringiensis and Its Pesticidal Crystal Proteins , 1998, Microbiology and Molecular Biology Reviews.

[14]  Ziniu Yu,et al.  Processing of δ-Endotoxin ofBacillus thuringiensissubsp.kurstakiHD-1 inHeliothis armigeraMidgut Juice and the Effects of Protease Inhibitors , 1998 .

[15]  R. Higgins,et al.  Baseline Susceptibility and Changes in Susceptibility to Bacillus thuringiensis subsp. kurstaki Under Selection Pressure in European Corn Borer (Lepidoptera: Pyralidae) , 1997 .

[16]  R. Beeman,et al.  Proteinase-mediated Insect Resistance to Bacillus thuringiensis Toxins* , 1997, The Journal of Biological Chemistry.

[17]  K. Kramer,et al.  Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin. , 1996, Insect biochemistry and molecular biology.

[18]  J. Van Rie,et al.  Biochemistry and genetics of insect resistance to Bacillus thuringiensis. , 1995, Annual review of entomology.

[19]  Leah S. Bauer,et al.  RESISTANCE: A THREAT TO THE INSECTICIDAL CRYSTAL PROTEINS OF BACILLUS THURINGIENSIS , 1995 .

[20]  D. Andow,et al.  Egg Weight, Fecundity, and Longevity Are Increased by Adult Feeding in Ostrinia nubilalis (Lepidoptera: Pyralidae) , 1994 .

[21]  K. Kramer,et al.  Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. , 1994, Biochemical and biophysical research communications.

[22]  S. Gill,et al.  In vitro and in vivo proteolysis of the Bacillus thuringiensis subsp. israelensis CryIVD protein by Culex quinquefasciatus larval midgut proteases. , 1993, Insect biochemistry and molecular biology.

[23]  F. Gould,et al.  Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[24]  H. Preisler,et al.  Pesticide Bioassays With Arthropods , 1991 .

[25]  B. Tabashnik,et al.  Field Development of Resistance to Bacillus thuringiensis in Diamondback Moth (Lepidoptera: Plutellidae) , 1990 .

[26]  K. Kramer,et al.  Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella: comparison of midgut proteinases from susceptible and resistant larvae. , 1990, Journal of invertebrate pathology.

[27]  H. R. Whiteley,et al.  Insecticidal crystal proteins of Bacillus thuringiensis. , 1989, Microbiological reviews.

[28]  B. H. Knowles,et al.  Specificity of Bacillus thuringiensis var. colmeri insecticidal delta-endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases. , 1986, European journal of biochemistry.

[29]  P. K. Smith,et al.  Measurement of protein using bicinchoninic acid. , 1985, Analytical biochemistry.

[30]  G. Hartley,et al.  Large-scale Rearing of a Sterile Backcross of the Tobacco Budworm (Lepidoptera: Noctuidae) , 1985 .

[31]  W. H. Mcgaughey,et al.  Insect Resistance to the Biological Insecticide Bacillus thuringiensis , 1985, Science.

[32]  N. Savin,et al.  A Critical Evaluation of Bioassay in Insecticide Research: Likelihood Ratio Tests of Dose-Mortality Regression , 1977 .

[33]  Z. Shao,et al.  Processing of delta-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors. , 1998, Journal of invertebrate pathology.

[34]  E. Alcácer,et al.  DIFFERENCES IN THE MIDGUT PROTEOLYTIC ACTIVITY OF TWO HELIOTHIS VIRESCENS STRAINS, ONE SUSCEPTIBLE AND ONE RESISTANT TO BACILLUS THURINGIENSIS TOXINS , 1996 .

[35]  B. Tabashnik,et al.  Evolution of Resistance to Bacillus Thuringiensis , 1994 .

[36]  S. Gill,et al.  The mode of action of Bacillus thuringiensis endotoxins. , 1992, Annual review of entomology.

[37]  Hongxia Zhao,et al.  [Digestive enzymes]. , 1954, Sbornik pro pathofysiologii traveni a vyzivy; gastroenterologia bohema.