High Order Direct Arbitrary-Lagrangian–Eulerian (ALE) Finite Volume Schemes for Hyperbolic Systems on Unstructured Meshes

In this work we develop a new class of high order accurate Arbitrary-Lagrangian–Eulerian (ALE) one-step finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations. The numerical algorithm is designed for two and three space dimensions, considering moving unstructured triangular and tetrahedral meshes, respectively. As usual for finite volume schemes, data are represented within each control volume by piecewise constant values that evolve in time, hence implying the use of some strategies to improve the order of accuracy of the algorithm. In our approach high order of accuracy in space is obtained by adopting a WENO reconstruction technique, which produces piecewise polynomials of higher degree starting from the known cell averages. Such spatial high order accurate reconstruction is then employed to achieve high order of accuracy also in time using an element-local space–time finite element predictor, which performs a one-step time discretization. Specifically, we adopt a discontinuous Galerkin predictor which can handle stiff source terms that might produce jumps in the local space–time solution. Since we are dealing with moving meshes the elements deform while the solution is evolving in time, hence making the use of a reference system very convenient. Therefore, within the space–time predictor, the physical element is mapped onto a reference element using a high order isoparametric approach, where the space–time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space–time nodes. The computational mesh continuously changes its configuration in time, following as closely as possible the flow motion. The entire mesh motion procedure is composed by three main steps, namely the Lagrangian step, the rezoning step and the relaxation step. In order to obtain a continuous mesh configuration at any time level, the mesh motion is evaluated by assigning each node of the computational mesh with a unique velocity vector at each timestep. The nodal solver algorithm preforms the Lagrangian stage, while we rely on a rezoning algorithm to improve the mesh quality when the flow motion becomes very complex, hence producing highly deformed computational elements. A so-called relaxation algorithm is finally employed to partially recover the optimal Lagrangian accuracy where the computational elements are not distorted too much. We underline that our scheme is supposed to be an ALE algorithm, where the local mesh velocity can be chosen independently from the local fluid velocity. Once the vertex velocity and thus the new node location has been determined, the old element configuration at time $$t^n$$tn is connected with the new one at time $$t^{n+1}$$tn+1 with straight edges to represent the local mesh motion, in order to maintain algorithmic simplicity. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing system of hyperbolic balance laws. The nonlinear system is reformulated more compactly using a space–time divergence operator and is then integrated on a moving space–time control volume. We adopt a linear parametrization of the space–time element boundaries and Gaussian quadrature rules of suitable order of accuracy to compute the integrals. We apply the new high order direct ALE finite volume schemes to several hyperbolic systems, namely the multidimensional Euler equations of compressible gas dynamics, the ideal classical magneto-hydrodynamics equations and the non-conservative seven-equation Baer–Nunziato model of compressible multi-phase flows with stiff relaxation source terms. Numerical convergence studies as well as several classical test problems will be shown to assess the accuracy and the robustness of our schemes. Finally we briefly present some variants of the algorithm that aim at improving the overall computational efficiency.

[1]  E. Toro,et al.  Solution of the generalized Riemann problem for advection–reaction equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  Michael Dumbser,et al.  Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations , 2009, J. Comput. Phys..

[3]  P. Colella A Direct Eulerian MUSCL Scheme for Gas Dynamics , 1985 .

[4]  Michael Dumbser,et al.  Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes , 2013, 1302.3076.

[5]  Tzanio V. Kolev,et al.  High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..

[6]  Miloslav Feistauer,et al.  Numerical simulation of interaction between turbulent flow and a vibrating airfoil , 2009 .

[7]  Claus-Dieter Munz,et al.  A Discontinuous Galerkin Scheme based on a Space-Time Expansion II. Viscous Flow Equations in Multi Dimensions , 2008, J. Sci. Comput..

[8]  H. Huynh,et al.  Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping , 1997 .

[9]  V. Dolejší,et al.  Semi-Implicit Interior Penalty Discontinuous Galerkin Methods for Viscous Compressible Flows , 2008 .

[10]  Michael Dumbser,et al.  ADER Schemes for Nonlinear Systems of Stiff Advection–Diffusion–Reaction Equations , 2011, J. Sci. Comput..

[11]  Stéphane Clain,et al.  The Multidimensional Optimal Order Detection method in the three‐dimensional case: very high‐order finite volume method for hyperbolic systems , 2013 .

[12]  M. J. Castro,et al.  FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems , 2010 .

[13]  Michael Dumbser,et al.  Cell centered direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity , 2016 .

[14]  J. S. Peery,et al.  Multi-Material ALE methods in unstructured grids , 2000 .

[15]  Jérôme Breil,et al.  A multi-material ReALE method with MOF interface reconstruction , 2013 .

[16]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[17]  Richard W. Healy,et al.  Solution of the advection-dispersion equation in two dimensions by a finite-volume Eulerian-Lagrangian localized adjoint method , 1998 .

[18]  Xijun Yu,et al.  The cell-centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two-dimensions , 2014 .

[19]  Vincenzo Casulli,et al.  A semi‐implicit numerical method for the free‐surface Navier–Stokes equations , 2014 .

[20]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[21]  Eleuterio F. Toro,et al.  Derivative Riemann solvers for systems of conservation laws and ADER methods , 2006, J. Comput. Phys..

[22]  Claus-Dieter Munz,et al.  A High Order Sharp-Interface Method with Local Time Stepping for Compressible Multiphase Flows , 2011 .

[23]  H. Vanderven Space?time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flowsII. Efficient flux quadrature , 2002 .

[24]  Michael Dumbser,et al.  Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers , 2013, J. Comput. Phys..

[25]  C. Ollivier-Gooch,et al.  A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .

[26]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[27]  Oscar Reula,et al.  Beyond ideal MHD: towards a more realistic modelling of relativistic astrophysical plasmas , 2008, 0810.1838.

[28]  Antonio Baeza,et al.  Adaptive mesh refinement techniques for high‐order shock capturing schemes for multi‐dimensional hydrodynamic simulations , 2006 .

[29]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[30]  Tzanio V. Kolev,et al.  High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics , 2013 .

[31]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[32]  M. Dumbser,et al.  High order space–time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems , 2013, 1304.5408.

[33]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[34]  Eitan Tadmor,et al.  Solution of two‐dimensional Riemann problems for gas dynamics without Riemann problem solvers , 2002 .

[35]  Angela Ferrari,et al.  SPH simulation of free surface flow over a sharp-crested weir , 2010 .

[36]  S. Osher,et al.  Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .

[37]  Rémi Abgrall,et al.  Multidimensional HLLC Riemann solver for unstructured meshes - With application to Euler and MHD flows , 2014, J. Comput. Phys..

[38]  Claus-Dieter Munz,et al.  ADER: A High-Order Approach for Linear Hyperbolic Systems in 2D , 2002, J. Sci. Comput..

[39]  With Invariant Submanifolds,et al.  Systems of Conservation Laws , 2009 .

[40]  Dinshaw S. Balsara,et al.  Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics , 2001 .

[41]  R. T. Cheng,et al.  SEMI-IMPLICIT FINITE DIFFERENCE METHODS FOR THREE-DIMENSIONAL SHALLOW WATER FLOW , 1992 .

[42]  A. Scott,et al.  Solitons and the Inverse Scattering Transform (Mark J. Ablowitz and Harvey Segur) , 1983 .

[43]  Chi-Wang Shu,et al.  A technique of treating negative weights in WENO schemes , 2000 .

[44]  Miloslav Feistauer,et al.  Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom , 2011 .

[45]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[46]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[47]  Michael Dumbser,et al.  Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..

[48]  Michael Dumbser,et al.  A New Family of High Order Unstructured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws , 2014 .

[49]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[50]  Rémi Abgrall,et al.  A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids , 2014, J. Comput. Phys..

[51]  Richard Saurel,et al.  Diffuse interface model for high speed cavitating underwater systems , 2009 .

[52]  Michael Dumbser,et al.  A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D , 2014, J. Comput. Phys..

[53]  Manuel Jesús Castro Díaz,et al.  Well-Balanced High Order Extensions of Godunov's Method for Semilinear Balance Laws , 2008, SIAM J. Numer. Anal..

[54]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[55]  Pavel B. Bochev,et al.  Fast optimization-based conservative remap of scalar fields through aggregate mass transfer , 2013, J. Comput. Phys..

[56]  Michael Dumbser,et al.  A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems , 2011, J. Sci. Comput..

[57]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[58]  Richard Saurel,et al.  Modelling evaporation fronts with reactive Riemann solvers , 2005 .

[59]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[60]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[61]  Dinshaw S. Balsara A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows , 2012, J. Comput. Phys..

[62]  Michael Dumbser,et al.  A semi‐implicit scheme for 3D free surface flows with high‐order velocity reconstruction on unstructured Voronoi meshes , 2013 .

[63]  E. Toro,et al.  A path-conservative method for a five-equation model of two-phase flow with an HLLC-type Riemann solver , 2011 .

[64]  Mikhail Shashkov,et al.  Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1574 Closure models for multimaterial cells in arbitrary Lagrangian–Eulerian hydrocodes ‡ , 2022 .

[65]  François Vilar,et al.  Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics , 2012 .

[66]  Michael Dumbser,et al.  On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws , 2011 .

[67]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[68]  Dinshaw Balsara,et al.  Second-Order-accurate Schemes for Magnetohydrodynamics with Divergence-free Reconstruction , 2003, astro-ph/0308249.

[69]  J. Falcovitz,et al.  A second-order Godunov-type scheme for compressible fluid dynamics , 1984 .

[70]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[71]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[72]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[73]  Raimund Bürger,et al.  Spectral WENO schemes with Adaptive Mesh Refinement for models of polydisperse sedimentation , 2013 .

[74]  John K. Dukowicz,et al.  Vorticity errors in multidimensional Lagrangian codes , 1992 .

[75]  Marcus J. Grote,et al.  Explicit local time-stepping methods for Maxwell's equations , 2010, J. Comput. Appl. Math..

[76]  Michael Dumbser,et al.  High order accurate direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes on moving curvilinear unstructured meshes , 2016 .

[77]  Raphaël Loubère,et al.  ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..

[78]  S. K. Trehan,et al.  Plasma oscillations (I) , 1960 .

[79]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[80]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[81]  M. J. Castro,et al.  ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications to geophysical flows , 2009 .

[82]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[83]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[84]  Bruno Després,et al.  Symmetrization of Lagrangian gas dynamic in dimension two and multidimensional solvers , 2003 .

[85]  Antonio Baeza,et al.  Adaptation based on interpolation errors for high order mesh refinement methods applied to conservation laws , 2012 .

[86]  Michael Dumbser,et al.  Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws , 2015, J. Comput. Phys..

[87]  Vít Dolejší,et al.  Analysis of semi-implicit DGFEM for nonlinear convection–diffusion problems on nonconforming meshes ☆ , 2007 .

[88]  Vladimir A. Titarev,et al.  WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions , 2011, J. Comput. Phys..

[89]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[90]  B R U N O G I A C O M A Z Z O,et al.  The exact solution of the Riemann problem in relativistic magnetohydrodynamics , 2006 .

[91]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[92]  Mikhail J. Shashkov,et al.  One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian-Eulerian methods , 2012, J. Comput. Phys..

[93]  Michael Dumbser,et al.  Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - Speed comparisons with Runge-Kutta methods , 2013, J. Comput. Phys..

[94]  Raphaël Loubère,et al.  High Order Accurate Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD Finite Volume Schemes for Non-Conservative Hyperbolic Systems with Stiff Source Terms , 2017 .

[95]  Miloslav Feistauer,et al.  The ALE Discontinuous Galerkin Method for the Simulatio of Air Flow Through Pulsating Human Vocal Folds , 2010 .

[96]  Manuel Jesús Castro Díaz,et al.  Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes , 2008, J. Comput. Phys..

[97]  Boleslaw K. Szymanski,et al.  Adaptive Local Refinement with Octree Load Balancing for the Parallel Solution of Three-Dimensional Conservation Laws , 1997, J. Parallel Distributed Comput..

[98]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[99]  R. Kidder,et al.  Laser-driven compression of hollow shells: power requirements and stability limitations , 1976 .

[100]  Rémi Abgrall,et al.  Discrete equations for physical and numerical compressible multiphase mixtures , 2003 .

[101]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[102]  Claus-Dieter Munz,et al.  A Discontinuous Galerkin Scheme Based on a Space–Time Expansion. I. Inviscid Compressible Flow in One Space Dimension , 2007, J. Sci. Comput..

[103]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[104]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[105]  Sander Rhebergen,et al.  Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations , 2008, J. Comput. Phys..

[106]  Rémi Abgrall,et al.  A comment on the computation of non-conservative products , 2010, J. Comput. Phys..

[107]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[108]  Chi-Wang Shu,et al.  A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry , 2010, J. Comput. Phys..

[109]  Vít Dolejší,et al.  A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow , 2004 .

[110]  M. Dumbser,et al.  High-Order Unstructured Lagrangian One-Step WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems: Applications to Compressible Multi-Phase Flows , 2013, 1304.4816.

[111]  Steven F. Son,et al.  Two-Phase Modeling of DDT in Granular Materials: Reduced Equations , 2000 .

[112]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[113]  Phillip Colella,et al.  A limiter for PPM that preserves accuracy at smooth extrema , 2008, J. Comput. Phys..

[114]  Mikhail Shashkov,et al.  A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation , 2013 .

[115]  Pekka Janhunen,et al.  HLLC solver for ideal relativistic MHD , 2007, J. Comput. Phys..

[116]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[117]  Guglielmo Scovazzi,et al.  A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements , 2011, J. Comput. Phys..

[118]  Michael Dumbser,et al.  Three-dimensional flow evolution after a dam break , 2010, Journal of Fluid Mechanics.

[119]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[120]  Guglielmo Scovazzi,et al.  Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach , 2012, J. Comput. Phys..

[121]  Pierre-Henri Maire,et al.  Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics , 2009, J. Comput. Phys..

[122]  J. V. D. Vegt,et al.  Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation , 2002 .

[123]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[124]  Jérôme Breil,et al.  Hybrid remap for multi-material ALE , 2011 .

[125]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[126]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[127]  Dinshaw S. Balsara,et al.  Multidimensional Riemann problem with self-similar internal structure. Part I - Application to hyperbolic conservation laws on structured meshes , 2014, J. Comput. Phys..

[128]  Eleuterio F. Toro,et al.  Space–time adaptive numerical methods for geophysical applications , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[129]  P. Raviart,et al.  An asymptotic expansion for the solution of the generalized Riemann problem Part I: General theory , 1988 .

[130]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[131]  Michael Dumbser,et al.  Arbitrary-Lagrangian–Eulerian ADER–WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws , 2014, 1402.6897.

[132]  Miltiadis V. Papalexandris,et al.  An exact Riemann solver for compressible two-phase flow models containing non-conservative products , 2007, J. Comput. Phys..

[133]  M. Baer,et al.  A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .

[134]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[135]  Thomas Sonar,et al.  On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations : polynomial recovery, accuracy and stencil selection , 1997 .

[136]  D. Stewart,et al.  Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations , 2001 .

[137]  R. Smith,et al.  AUSM(ALE) , 1999 .

[138]  Stéphane Clain,et al.  Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials , 2012 .

[139]  M. Dumbser,et al.  A New Stable Version of the SPH Method in Lagrangian Coordinates , 2008 .

[140]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[141]  Dimitris Drikakis,et al.  WENO schemes for mixed-elementunstructured meshes , 2010 .

[142]  P. Knupp Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .

[143]  Ilya Peshkov,et al.  On a pure hyperbolic alternative to the Navier-Stokes equations , 2014 .

[144]  Walter Boscheri,et al.  An efficient high order direct ALE ADER finite volume scheme with a posteriori limiting for hydrodynamics and magnetohydrodynamics , 2017 .

[145]  Vincenzo Casulli,et al.  A SEMI-IMPLICIT FINITE DIFFERENCE METHOD FOR NON-HYDROSTATIC, FREE-SURFACE FLOWS , 1999 .

[146]  Jaromír Horácek,et al.  Simulation of compressible viscous flow in time-dependent domains , 2013, Appl. Math. Comput..

[147]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[148]  Michael Dumbser,et al.  Building Blocks for Arbitrary High Order Discontinuous Galerkin Schemes , 2006, J. Sci. Comput..

[149]  Chi-Wang Shu,et al.  Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow , 2011, J. Comput. Phys..

[150]  Michael Dumbser,et al.  Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.

[151]  Rémi Abgrall,et al.  Efficient numerical approximation of compressible multi-material flow for unstructured meshes , 2003 .

[152]  Rémi Abgrall,et al.  Computations of compressible multifluids , 2001 .

[153]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[154]  Bruno Després,et al.  A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..

[155]  Richard Saurel,et al.  Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures , 2009, J. Comput. Phys..

[156]  Pavel Váchal,et al.  Synchronized flux corrected remapping for ALE methods , 2011 .

[157]  Richard Saurel,et al.  Exact and Approximate Riemann Solvers for Real Gases , 1994 .

[158]  Dinshaw S. Balsara Multidimensional HLLE Riemann solver: Application to Euler and magnetohydrodynamic flows , 2010, J. Comput. Phys..

[159]  John K. Dukowicz,et al.  A general, non-iterative Riemann solver for Godunov's method☆ , 1985 .

[160]  Michael Dumbser,et al.  A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws , 2014, J. Comput. Phys..

[161]  M. Dumbser,et al.  Heterogeneous Domain Decomposition for Computational Aeroacoustics , 2006 .

[162]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[163]  Jérôme Breil,et al.  Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods , 2011, J. Comput. Phys..

[164]  Vincenzo Casulli,et al.  Semi-implicit finite difference methods for the two-dimensional shallow water equation , 1990 .

[165]  G. Bodo,et al.  An HLLC Riemann solver for relativistic flows – II. Magnetohydrodynamics , 2006 .

[166]  R. Abgrall APPROXIMATION DU PROBLEME DE RIEMANN VRAIMENT MULTDIDIMENSIONNEL DES EQUATIONS D'EULER PAR UNE METHODE DE TYPE ROE (II) : SOLUTION DU PROBLEME DE RIEM ANN APPROCHE , 1994 .

[167]  Stéphane Clain,et al.  A high-order finite volume method for systems of conservation laws - Multi-dimensional Optimal Order Detection (MOOD) , 2011, J. Comput. Phys..

[168]  Carlos Parés,et al.  Godunov method for nonconservative hyperbolic systems , 2007 .

[169]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[170]  Yong-Tao Zhang,et al.  Third Order WENO Scheme on Three Dimensional Tetrahedral Meshes , 2008 .

[171]  Donald W. Schwendeman,et al.  The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow , 2006, J. Comput. Phys..

[172]  Michael Dumbser,et al.  FORCE schemes on unstructured meshes I: Conservative hyperbolic systems , 2009, J. Comput. Phys..

[173]  Mikhail Shashkov,et al.  Exploration of new limiter schemes for stress tensors in Lagrangian and ALE hydrocodes , 2013 .

[174]  K. Riemslagh,et al.  An arbitrary Lagrangian-Eulerian finite-volume method for the simulation of rotary displacement pump flow , 2000 .

[175]  Eleuterio F. Toro,et al.  ADER SCHEMES FOR SCALAR HYPERBOLIC CONSERVATION LAWS IN THREE SPACE DIMENSIONS , 2003 .

[176]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[177]  Rémi Abgrall,et al.  Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics , 2011 .

[178]  Stéphane Clain,et al.  The MOOD method in the three-dimensional case: Very-High-Order Finite Volume Method for Hyperbolic Systems. , 2012 .

[179]  Markus Berndt,et al.  Using the feasible set method for rezoning in ALE , 2010, ICCS.

[180]  Bruno Després,et al.  A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes , 2012, J. Comput. Phys..

[181]  Manuel Jesús Castro Díaz,et al.  High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems , 2006, Math. Comput..

[182]  Raphaël Loubère,et al.  3D staggered Lagrangian hydrodynamics scheme with cell‐centered Riemann solver‐based artificial viscosity , 2013 .

[183]  Pierre-Henri Maire,et al.  A unified sub‐cell force‐based discretization for cell‐centered Lagrangian hydrodynamics on polygonal grids , 2011 .

[184]  Veselin Dobrev,et al.  Curvilinear finite elements for Lagrangian hydrodynamics , 2011 .

[185]  L U C I A N O R E Z Z O L L A,et al.  Under consideration for publication in J. Fluid Mech. 1 An Improved Exact Riemann Solver for Relativistic Hydrodynamics , 2008 .

[186]  Juan Cheng,et al.  Improvement on Spherical Symmetry in Two-Dimensional Cylindrical Coordinates for a Class of Control Volume Lagrangian Schemes , 2012 .

[187]  Michael Dumbser,et al.  An Efficient Quadrature-Free Formulation for High Order Arbitrary-Lagrangian–Eulerian ADER-WENO Finite Volume Schemes on Unstructured Meshes , 2016, J. Sci. Comput..

[188]  Dinshaw S. Balsara,et al.  Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics , 2012, J. Comput. Phys..

[189]  Gerald Warnecke,et al.  Modeling phase transition for compressible two-phase flows applied to metastable liquids , 2010, J. Comput. Phys..

[190]  Jérôme Breil,et al.  A second‐order cell‐centered Lagrangian scheme for two‐dimensional compressible flow problems , 2008 .

[191]  Raphaël Loubère,et al.  A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidimensional approximate Riemann solver , 2010, ICCS.

[192]  I. Toumi A weak formulation of roe's approximate riemann solver , 1992 .

[193]  Michael Dumbser,et al.  High‐order ADER‐WENO ALE schemes on unstructured triangular meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics , 2013, 1310.7256.

[194]  Carlos Parés Madroñal,et al.  Numerical methods for nonconservative hyperbolic systems: a theoretical framework , 2006, SIAM J. Numer. Anal..

[195]  Mikhail Shashkov,et al.  A finite volume cell‐centered Lagrangian hydrodynamics approach for solids in general unstructured grids , 2013 .

[196]  Hervé Guillard,et al.  A five equation reduced model for compressible two phase flow problems , 2005 .

[197]  Eleuterio F. Toro,et al.  HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow , 2010, J. Comput. Phys..

[198]  G. Stelling,et al.  Semi‐implicit subgrid modelling of three‐dimensional free‐surface flows , 2011 .

[199]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[200]  P. Raviart,et al.  An asymptotic expansion for the solution of the generalized Riemann problem. Part 2 : application to the equations of gas dynamics , 1989 .

[201]  Chi-Wang Shu,et al.  A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..

[202]  E. Toro,et al.  An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity , 2007 .

[203]  Michael Dumbser,et al.  ADER-WENO finite volume schemes with space-time adaptive mesh refinement , 2012, J. Comput. Phys..

[204]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[205]  R. Fedkiw,et al.  The Ghost Fluid Method for de agration and detonation discontinuities , 1998 .

[206]  Jiaquan Gao,et al.  How to prevent pressure oscillations in multicomponent flow calculations , 2000, Proceedings Fourth International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region.

[207]  Carlos Parés,et al.  On the well-balance property of Roe?s method for nonconservative hyperbolic systems , 2004 .

[208]  Jérôme Breil,et al.  A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction , 2010, J. Comput. Phys..

[209]  S. Osher,et al.  Computing interface motion in compressible gas dynamics , 1992 .

[210]  Gerald Warnecke,et al.  A simple method for compressible multiphase mixtures and interfaces , 2003 .

[211]  Ronald Fedkiw,et al.  An unconditionally stable fully conservative semi-Lagrangian method , 2010, J. Comput. Phys..

[212]  Pierre-Henri Maire,et al.  A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids , 2011 .

[213]  Michael Dumbser,et al.  Fast high order ADER schemes for linear hyperbolic equations , 2004 .

[214]  Rémi Abgrall,et al.  Modelling phase transition in metastable liquids: application to cavitating and flashing flows , 2008, Journal of Fluid Mechanics.

[215]  Claus-Dieter Munz,et al.  On Godunov-type schemes for Lagrangian gas dynamics , 1994 .

[216]  Richard Saurel,et al.  A multiphase model with internal degrees of freedom: application to shock–bubble interaction , 2003, Journal of Fluid Mechanics.

[217]  Tong Zhang,et al.  Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems , 1990 .

[218]  Eleuterio F. Toro,et al.  Solvers for the high-order Riemann problem for hyperbolic balance laws , 2008, J. Comput. Phys..

[219]  C. L. Rousculp,et al.  A Compatible, Energy and Symmetry Preserving Lagrangian Hydrodynamics Algorithm in Three-Dimensional Cartesian Geometry , 2000 .

[220]  Todd Arbogast,et al.  An Eulerian-Lagrangian WENO finite volume scheme for advection problems , 2012, J. Comput. Phys..

[221]  Chi-Wang Shu,et al.  High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations , 2009, J. Comput. Phys..

[222]  Richard Saurel,et al.  A numerical method for one‐dimensional compressible multiphase flows on moving meshes , 2007 .

[223]  Armin Iske,et al.  ADER schemes on adaptive triangular meshes for scalar conservation laws , 2005 .

[224]  Michael Dumbser,et al.  High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes , 2014, J. Comput. Phys..

[225]  Michael Dumbser,et al.  On Arbitrary-Lagrangian-Eulerian One-Step WENO Schemes for Stiff Hyperbolic Balance Laws , 2012, 1207.6407.

[226]  Michael Dumbser,et al.  A new 3D parallel SPH scheme for free surface flows , 2009 .

[227]  William J. Rider,et al.  Multi-material pressure relaxation methods for Lagrangian hydrodynamics , 2013 .

[228]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[229]  Rémi Abgrall APPROXIMATION DU PROBLEME DE RIEMANN VRAIMENT MULTIDIMENSIONNEL DES EQUATIONS D'EULER PAR UNE METHODE DE TYPE ROE (I) : LA LINEARISATION , 1994 .

[230]  G. Warnecke,et al.  The Riemann problem for the Baer-Nunziato two-phase flow model , 2004 .

[231]  Lilia Krivodonova,et al.  An efficient local time-stepping scheme for solution of nonlinear conservation laws , 2010, J. Comput. Phys..

[232]  Marcus J. Grote,et al.  High-order explicit local time-stepping methods for damped wave equations , 2011, J. Comput. Appl. Math..