Rotational Dynamics of Europa

The rotational state of Europa is only rather poorly constrained at present. It is known to rotate about an axis that is nearly perpendicular to the orbit plane, at a rate that is nearly constant and approximates the mean orbital rate. Small departures from a constant rotation rate and oscillations of the rotation axis both lead to stresses that may influence the location and orientation of surface tectonic features. However, at present geological evidence for either of these processes is disputed. We describe a variety of issues that future geodetic observations will likely resolve, including variations in the rate and direction of rotation, on a wide range of timescales. Since the external perturbations causing these changes are generally well known, observations of the amplitude and phase of the responses will provide important information about the internal structure of Europa. We focus on three aspects of the rotational dynamics: obliquity, forced librations, and possible small departures from a synchronous rotation rate. Europa’s obliquity should be nonzero, while the rotation rate is likely to be synchronous unless lateral shell thickness variations occur. The tectonic consequences of a nonzero obliquity and true polar wander have yet to be thoroughly investigated.

[1]  G. Darwin Tidal friction and cosmogony , 2009 .

[2]  I. Matsuyama,et al.  True polar wander on Europa from global-scale small-circle depressions , 2008, Nature.

[3]  V. Dehant,et al.  The librations, shape, and icy shell of Europa , 2008 .

[4]  I. Matsuyama,et al.  Tectonic patterns on reoriented and despun planetary bodies , 2008 .

[5]  J. Wisdom Tidal dissipation at arbitrary eccentricity and obliquity , 2008 .

[6]  B. Levrard A proof that tidal heating in a synchronous rotation is always larger than in an asymptotic nonsynchronous rotation state , 2007, 0710.5651.

[7]  R. Kirk,et al.  Titan's Spin State from Cassini SAR Data: Evidence for an Internal Ocean , 2007 .

[8]  P. Thomas,et al.  The global shape of Europa: Constraints on lateral shell thickness variations , 2007 .

[9]  I. Matsuyama,et al.  Rotational stability of tidally deformed planetary bodies , 2007 .

[10]  Y. Harada,et al.  Effect of non‐synchronous rotation on surface stress upon Europa: Constraints on surface rheology , 2007 .

[11]  V. Dehant,et al.  Inertial core-mantle coupling and libration of Mercury , 2007 .

[12]  R. Jurgens,et al.  Large Longitude Libration of Mercury Reveals a Molten Core , 2007, Science.

[13]  J. Laskar,et al.  Tidal dissipation within hot Jupiters : a new appraisal , 2006, astro-ph/0612044.

[14]  L. Hinnov,et al.  Cyclostratigraphy and the Astronomical Time Scale , 2007, Stratigraphy.

[15]  R. Greenberg,et al.  Cycloidal cracks on Europa: Improved modeling and non-synchronous rotation implications , 2007 .

[16]  A. Correia The core–mantle friction effect on the secular spin evolution of terrestrial planets , 2006 .

[17]  David E. Smith,et al.  Tides on Europa, and the thickness of Europa's icy shell , 2006 .

[18]  F. Nimmo,et al.  Forced obliquity and moments of inertia of Titan , 2006 .

[19]  V. Lainey,et al.  Synthetic representation of the Galilean satellites' orbital motions from L1 ephemerides , 2006 .

[20]  R. Greenberg,et al.  Crack azimuths on Europa: Sequencing of the northern leading hemisphere , 2006 .

[21]  J. Vondrak,et al.  Report of the International Astronomical Union Division I Working Group on Precession and the Ecliptic , 2006 .

[22]  R. Greenberg,et al.  Unraveling Europa's Tectonic History: Evidence for a Finite Obliquity? , 2006 .

[23]  J. Wisdom Dynamics of the Lunar Spin Axis , 2006 .

[24]  R. Canup,et al.  The Obliquity of Jupiter , 2006 .

[25]  Y. Harada,et al.  The dependence of surface tidal stress on the internal structure of Europa: The possibility of cracking of the icy shell , 2006 .

[26]  T. Tokano,et al.  Wind‐induced seasonal angular momentum exchange at Titan's surface and its influence on Titan's length‐of‐day , 2005 .

[27]  Gabriel Tobie,et al.  Tidal dissipation within large icy satellites: Applications to Europa and Titan , 2005 .

[28]  B. Bills Free and forced obliquities of the Galilean satellites of Jupiter , 2005 .

[29]  B. Bills,et al.  Forced obliquity variations of Mercury , 2005 .

[30]  M. Roos-Serote,et al.  The Changing Face of Titan’s Haze: Is it all Dynamics? , 2005 .

[31]  T. Johnson Geology of the Icy Satellites , 2005 .

[32]  Paul M. Schenk,et al.  Ages and interiors: the cratering record of the Galilean satellites , 2007 .

[33]  D. Hamilton,et al.  Tilting Saturn. I. Analytic Model , 2004 .

[34]  D. Hamilton,et al.  Tilting Saturn. II. Numerical Model , 2004 .

[35]  J. Arlot,et al.  New accurate ephemerides for the Galilean satellites of Jupiter - II. Fitting the observations , 2004 .

[36]  T. Spohn,et al.  Thermal-orbital evolution of Io and Europa , 2004 .

[37]  C. Sotin,et al.  Internal structure and dynamics of the large icy satellites , 2004 .

[38]  Jacques Laskar,et al.  Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics , 2004, Nature.

[39]  V. Lainey,et al.  New accurate ephemerides for the Galilean satellites of Jupiter. I. Numerical integration of elaborated equations of motion , 2004 .

[40]  P. Geissler,et al.  Crack azimuths on Europa: time sequence in the southern leading face , 2004 .

[41]  F. Nimmo Non-Newtonian topographic relaxation on Europa , 2004 .

[42]  G. Schubert,et al.  Interior composition, structure and dynamics of the Galilean satellites , 2004 .

[43]  B. Bills,et al.  A Solar System Survey of Forced Librations in Longitude , 2003 .

[44]  B. R. Tufts,et al.  The Rotation of Europa , 2002 .

[45]  S. Peale,et al.  A Primordial Origin of the Laplace Relation Among the Galilean Satellites , 2002, Science.

[46]  B. R. Tufts,et al.  Polar Wander and Surface Convergence of Europa's Ice Shell: Evidence from a Survey of Strike-Slip Displacement , 2002 .

[47]  S. Kattenhorn Nonsynchronous Rotation Evidence and Fracture History in the Bright Plains Region, Europa , 2002 .

[48]  David E. Smith,et al.  A procedure for determining the nature of Mercury's core , 2002 .

[49]  Harold F. Levison,et al.  Differential Cratering of Synchronously Rotating Satellites by Ecliptic Comets , 2001 .

[50]  B. R. Tufts,et al.  Europa's Rate of Rotation Derived from the Tectonic Sequence in the Astypalaea Region , 2001 .

[51]  G. Schubert,et al.  The Tidal Response of Europa , 2000 .

[52]  B. Bills Obliquity‐oblateness feedback on Mars , 1999 .

[53]  Kevin Zahnle,et al.  Cratering Rates in the Outer Solar System , 1999 .

[54]  B. R. Tufts,et al.  Formation of cycloidal features on Europa. , 1999, Science.

[55]  C. Murray,et al.  Solar System Dynamics: Expansion of the Disturbing Function , 1999 .

[56]  F. Flasar The dynamic meteorology of Titan , 1998 .

[57]  B. R. Tufts,et al.  Strike-slip faults on Europa: Global shear patterns driven by tidal stress , 1998 .

[58]  Robert T. Pappalardo,et al.  Tectonic Processes on Europa: Tidal Stresses, Mechanical Response, and Visible Features , 1998 .

[59]  R. A. Jacobson,et al.  Distribution of rock, metals, and ices in Callisto. , 1998, Science.

[60]  J. Lieske Galilean Satellite Ephemerides E5 , 1998 .

[61]  J. Burns,et al.  Evidence for non-synchronous rotation of Europa , 1998, Nature.

[62]  B. Chao,et al.  The Incredible Shrinking Tropics , 1998 .

[63]  S. Xu,et al.  Gravitational coupling in a triaxial ellipsoidal Earth , 1997 .

[64]  W. Folkner,et al.  Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. , 1997, Science.

[65]  B. R. Tufts,et al.  Rotation of Europa: Constraints from Terminator and Limb Positions , 1997 .

[66]  G. Schubert,et al.  Europa's differentiated internal structure: inferences from two Galileo encounters. , 1997, Science.

[67]  P. Bretagnon,et al.  Theory of the rotation of the rigid Earth , 1997 .

[68]  Charles F. Yoder,et al.  Venusian Spin Dynamics , 1997 .

[69]  M. Vincent,et al.  Determination of Mercury's 88 day libration and fluid core size from orbit , 1997 .

[70]  R. A. Jacobson,et al.  Europa's differentiated internal structure: inferences from four Galileo encounters. , 1997, Science.

[71]  J. D. Anderson,et al.  Gravitational constraints on the internal structure of Ganymede , 1996, Nature.

[72]  B. Buffett Gravitational oscillations in the length of day , 1996 .

[73]  R. Rand,et al.  Synchronous Locking of Tidally Evolving Satellites , 1996 .

[74]  G. Schubert,et al.  Galileo Gravity Results and the Internal Structure of Io , 1996, Science.

[75]  W. McKinnon,et al.  Is There Evidence for Polar Wander on Europa , 1996 .

[76]  B. Bills,et al.  Constraints on density models from radial moments: Applications to Earth, Moon, and Mars , 1995 .

[77]  Charles F. Yoder,et al.  Venus' Free Obliquity , 1995 .

[78]  B. Bills Obliquity-oblateness feedback : are climatically sensitive values of obliquity dynamically unstable ? , 1994 .

[79]  J. Laskar,et al.  Orbital, precessional, and insolation quantities for the earth from -20 Myr to +10 Myr. , 1993 .

[80]  J. Wisdom,et al.  The Chaotic Obliquity of Mars , 1993, Science.

[81]  J. Laskar,et al.  The chaotic obliquity of the planets , 1993, Nature.

[82]  J. Laskar,et al.  Stability of the Astronomical Frequencies Over the Earth's History for Paleoclimate Studies , 1992, Science.

[83]  W. Ward Long-term orbital and spin dynamics of Mars , 1992 .

[84]  B. Bills The rigid body obliquity history of Mars , 1990 .

[85]  D. Stevenson,et al.  Thermal state of an ice shell on Europa , 1989 .

[86]  J. Henrard,et al.  Colombo's top , 1987 .

[87]  D. Stevenson,et al.  Polar wander of an ice shell on Europa , 1987 .

[88]  A. McEwen Tidal reorientation and the fracturing of Jupiter's moon Europa , 1986, Nature.

[89]  S. Weidenschilling,et al.  How fast do Galilean satellites spin , 1984 .

[90]  T. Soler A new matrix development of the potential and attraction at exterior points as a function of the inertia tensors , 1984 .

[91]  E. M. Shoemaker,et al.  Craters and basins on Ganymede and Callisto - Morphological indicators of crustal evolution , 1982 .

[92]  E. Shoemaker,et al.  Cratering Time Scales for the Galilean Satellites , 1982 .

[93]  S. Peale Measurement accuracies required for the determination of a Mercurian liquid core , 1981 .

[94]  Piet Hut,et al.  Tidal evolution in close binary systems , 1981 .

[95]  F. Mignard The evolution of the lunar orbit revisited, II , 1980 .

[96]  C. F. Yoder,et al.  Does Venus wobble , 1979 .

[97]  W. DeCampli,et al.  Comments on the Venus rotation pole , 1979 .

[98]  F. Mignard The evolution of the lunar orbit revisited. I , 1979 .

[99]  J. Lieske POLES OF THE GALILEAN SATELLITES , 1979 .

[100]  JOHN S. Lewis,et al.  The evolution of icy satellite interiors and surfaces , 1978 .

[101]  J. Anderson,et al.  Possible flyby measurements of Galilean satellite interior structure , 1978 .

[102]  T. Lederle,et al.  Expressions for the precession quantities based upon the IAU /1976/ system of astronomical constants , 1977 .

[103]  J. D. Hays,et al.  Variations in the Earth ' s Orbit : Pacemaker of the Ice Ages Author ( s ) : , 2022 .

[104]  A. Berger Obliquity and precession for the last 5000000 years , 1976 .

[105]  S. Peale,et al.  Does Mercury have a molten core? , 1976, Nature.

[106]  W. Ward Past Orientation of the Lunar Spin Axis , 1975, Science.

[107]  W. Ward Tidal friction and generalized Cassini's laws in the solar system. [for planetary spin axis rotation] , 1975 .

[108]  M. Malin,et al.  Climatic variations on Mars: 2. Evolution of carbon dioxide atmosphere and polar caps , 1974 .

[109]  S. Peale Possible histories of the obliquity of Mercury , 1974 .

[110]  W. R. Ward Large-Scale Variations in the Obliquity of Mars , 1973, Science.

[111]  W. Ward,et al.  I. The formation of planetesimals. II. Tidal friction and generalized Cassini's laws in the solar system , 1973 .

[112]  A. Vernekar Long-Period Global Variations of Incoming Solar Radiation , 1972 .

[113]  S. Peale,et al.  Spin-orbit coupling in the solar system.1 The resonant rotation of Venus , 1967 .

[114]  G. Colombo,et al.  Cassini's second and third laws. , 1967 .

[115]  Peter Goldreich,et al.  Spin-orbit coupling in the solar system , 1966 .

[116]  W. M. Kaula Tidal dissipation by solid friction and the resulting orbital evolution , 1964 .

[117]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .