Avoidance of singularities in asymptotically safe Quantum Einstein Gravity

New general spherically symmetric solutions have been derived with a cosmological "constant" \Lambda as a source. This \Lambda field is not constant but it satisfies the properties of the asymptotically safe gravity at the ultraviolet fixed point. The importance of these solutions comes from the fact that they describe the near to the centre region of black hole spacetimes as this is modified by the Renormalization Group scaling behaviour of the fields. The consistent set of field equations which respect the Bianchi identities is derived and solved. One of the solutions (with conventional sign of temporal-radial metric components) is timelike geodesically complete, and although there is still a curvature divergent origin, this is never approachable by an infalling massive particle which is reflected at a finite distance due to the repulsive origin. Another family of solutions (of both signatures) range from a finite radius outwards, they cannot be extended to the centre of spherical symmetry, and the curvature invariants are finite at the minimum radius.

[1]  Vasilios Zarikas,et al.  A solution of the coincidence problem based on the recent galactic core black hole mass density increase , 2011, The European Physical Journal C.

[2]  M. Reuter,et al.  Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .

[3]  Frank Saueressig,et al.  The R^2 phase-diagram of QEG and its spectral dimension , 2012, 1206.0657.

[4]  M. Hindmarsh,et al.  f(R) Gravity from the renormalisation group , 2012, 1203.3957.

[5]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[6]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[7]  M. Reuter,et al.  Cosmology of the Planck era from a renormalization group for quantum gravity , 2002 .

[8]  M. Reuter,et al.  Quantum Gravity Effects in Rotating Black Holes , 2006, hep-th/0612037.

[9]  Frank Saueressig,et al.  Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity , 2007, 0708.1317.

[10]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[11]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[12]  M. Reuter,et al.  Running boundary actions, Asymptotic Safety, and black hole thermodynamics , 2012, 1205.3583.

[13]  Frank Saueressig,et al.  On the Renormalization Group Flow of Gravity , 2007, 0712.0445.

[14]  C. Rahmede Old and new results from the Wilsonian approach to gravity , 2011 .

[15]  Frank Saueressig,et al.  The universal RG machine , 2010, 1012.3081.

[16]  Yi-Fu Cai,et al.  Asymptotically safe gravity as a scalar-tensor theory and its cosmological implications , 2011, 1107.5815.

[17]  Howard Georgi,et al.  Effective Field Theory , 1993 .

[18]  A. V. D. Ven Two-loop quantum gravity , 1992 .

[19]  M. Reuter,et al.  Asymptotic Safety, Fractals, and Cosmology , 2012, 1205.5431.

[20]  Martin Reuter,et al.  Background Independence and Asymptotic Safety in Conformally Reduced Gravity , 2008, 0801.3287.

[21]  M. Reuter,et al.  The role of background independence for asymptotic safety in Quantum Einstein Gravity , 2009, 0903.2971.

[22]  Benjamin Koch,et al.  Structural aspects of asymptotically safe black holes , 2013, 1306.1546.

[23]  Fixed points of quantum gravity in extra dimensions , 2006, hep-th/0602203.

[24]  Variable G and Λ: scalar-tensor versus RG-improved cosmology , 2004, astro-ph/0410260.

[25]  A. Bonanno,et al.  Proper time flow equation for gravity , 2005 .

[26]  Martin Reuter,et al.  Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance , 2008, 0804.1475.

[27]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[28]  J. Oliveira,et al.  Stability analysis and area spectrum of three-dimensional Lifshitz black holes , 2011, 1110.4856.

[29]  Roberto Percacci,et al.  Fixed points of higher-derivative gravity. , 2006, Physical review letters.

[30]  Gianluca Calcagni,et al.  Probing the quantum nature of spacetime by diffusion , 2013, 1304.7247.

[31]  F. Saueressig,et al.  Four‐derivative Interactions in Asymptotically Safe Gravity , 2009, 0909.3265.

[32]  M. Reuter,et al.  Renormalization group improved gravitational actions: A Brans-Dicke approach , 2004 .

[33]  E. Abdalla,et al.  Stability and thermodynamics of brane black holes , 2006, gr-qc/0604033.

[34]  Frank Saueressig,et al.  Fractal space-times under the microscope: a renormalization group view on Monte Carlo data , 2011, 1110.5224.

[35]  R. Percacci,et al.  Asymptotic safety of gravity coupled to matter , 2003, hep-th/0304222.

[36]  Frank Saueressig,et al.  Taming perturbative divergences in asymptotically safe gravity , 2009, 0902.4630.

[37]  Juergen A. Dietz,et al.  Redundant operators in the exact renormalisation group and in the f (R) approximation to asymptotic safety , 2013, Journal of High Energy Physics.

[38]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[39]  Daniel F. Litim,et al.  Black holes and asymptotically safe gravity , 2010, 1002.0260.

[40]  Juergen A. Dietz,et al.  Asymptotic safety in the f(R) approximation , 2012, 1211.0955.

[41]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[42]  B. Ward Planck Scale Remnants in Resummed Quantum Gravity , 2006, hep-ph/0605054.

[43]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[44]  Daniel F. Litim,et al.  Black Hole Thermodynamics Under the Microscope , 2012, 1212.1821.

[45]  R. Torres,et al.  Singularity-free gravitational collapse and asymptotic safety , 2014, 1404.7655.

[46]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[47]  M. Reuter,et al.  Asymptotic Safety and Black Hole Thermodynamics , 2012, 1212.4274.

[48]  F. Fayos,et al.  Singularity free gravitational collapse in an effective dynamical quantum spacetime , 2014, 1405.7922.

[49]  M. Reuter,et al.  Running Newton constant, improved gravitational actions, and galaxy rotation curves , 2004 .

[50]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[51]  Steven Weinberg,et al.  What is Quantum Field Theory, and What Did We Think It Is? , 1996, hep-th/9702027.

[52]  B. Chauvineau,et al.  Scalar-Tensor gravity with system-dependent potential and its relation with Renormalization Group extended General Relativity , 2015, 1504.05119.

[53]  Alfio Bonanno,et al.  Spacetime structure of an evaporating black hole in quantum gravity , 2006 .

[54]  B. Koch,et al.  Black hole solution for scale-dependent gravitational couplings and the corresponding coupling flow , 2013, 1303.3892.

[55]  David Mattingly,et al.  Asymptotic safety, asymptotic darkness, and the hoop conjecture in the extreme UV , 2010, 1006.0718.

[56]  G. Hooft,et al.  One loop divergencies in the theory of gravitation , 1974 .

[57]  M. Reuter,et al.  Quantum gravity effects in the Kerr spacetime , 2010, 1009.3528.

[58]  M. H. Goroff,et al.  Quantum gravity at two loops , 1985 .

[59]  B. Mirza,et al.  Entropic force, running gravitational coupling and future singularities , 2013, 1309.7827.

[60]  M. Reuter,et al.  Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .

[61]  Christoph Rahmede,et al.  Asymptotically safe Starobinsky inflation , 2013, 1311.0881.

[62]  Renormalization group improved black hole spacetimes , 2000, hep-th/0002196.

[63]  F. Saueressig,et al.  Black holes within asymptotic safety , 2014, 1401.4452.

[64]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[65]  A. Bonanno Astrophysical implications of the Asymptotic Safety Scenario in Quantum Gravity , 2009, 0911.2727.

[66]  S. Weinberg Ultraviolet divergences in quantum theories of gravitation. , 1980 .

[67]  Alfio Bonanno,et al.  Quantum gravity effects near the null black hole singularity , 1999 .

[68]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[69]  Martin Reuter,et al.  Running gauge coupling in asymptotically safe quantum gravity , 2009, 0910.4938.

[70]  F. Saueressig,et al.  A Class of nonlocal truncations in quantum Einstein gravity and its renormalization group behavior , 2002 .

[71]  Frank Saueressig,et al.  Quantum Einstein gravity , 2012, 1202.2274.

[72]  Martin Reuter,et al.  QED coupled to QEG , 2011, 1101.6007.

[73]  M. Reuter,et al.  Effective Lagrangians in Quantum Electrodynamics , 1985 .

[74]  Martin Reuter,et al.  Effective Potential of the Conformal Factor: Gravitational Average Action and Dynamical Triangulations , 2008, 0806.3907.

[75]  Behrouz Mirza,et al.  Asymptotic safety, singularities, and gravitational collapse , 2010, 1008.2768.

[76]  R. Percacci,et al.  Conformally reduced quantum gravity revisited , 2009, 0904.2510.

[77]  Andreas Nink,et al.  On the physical mechanism underlying asymptotic safety , 2012, 1208.0031.

[78]  On the ultraviolet behaviour of Newton's constant , 2004, hep-th/0401071.

[79]  Tim R. Morris The Exact renormalization group and approximate solutions , 1994 .

[80]  M. Reuter,et al.  Fractal spacetime structure in asymptotically safe gravity , 2005 .

[81]  Wataru Souma,et al.  Non-Trivial Ultraviolet Fixed Point in Quantum Gravity , 1999, hep-th/9907027.

[82]  Roberto Percacci,et al.  The running gravitational couplings , 1998 .

[83]  Vasilios Zarikas,et al.  Efficient electroweak baryogenesis by black holes , 2014, 1406.6215.

[84]  Benjamin Koch,et al.  Black Holes and Running Couplings: A Comparison of Two Complementary Approaches , 2013, 1311.1121.

[85]  Asymptotic Safety in Quantum Einstein Gravity: Nonperturbative Renormalizability and Fractal Spacetime Structure , 2005, hep-th/0511260.

[86]  S. Weinberg Effective Field Theory, Past and Future , 2009, 0908.1964.

[87]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[88]  A. Bonanno An effective action for asymptotically safe gravity , 2012, 1203.1962.

[89]  Damien A. Easson,et al.  Black holes in an asymptotically safe gravity theory with higher derivatives , 2010, 1007.1317.

[90]  B. Koch,et al.  Black hole solutions for scale-dependent couplings: the de Sitter and the Reissner–Nordström case , 2015, 1501.00904.

[91]  Joseph Lipka,et al.  A Table of Integrals , 2010 .