Self–organized dynamics in spatially structured populations

Self–organization and pattern formation represent the emergence of order in temporal and spatial processes. Self–organization in population ecology is gaining attention due to the recent advances concerning temporal fluctuations in the population size of dispersal–linked subunits. We shall report that spatially structured models of population renewal promote the emergence of a complex power law order in spatial population dynamics. We analyse a variety of population models showing that self–organization can be identified as a temporal match in population dynamics among local units, and how the synchrony changes in time. Our theoretical results are concordant with analyses of population data on the Canada lynx.

[1]  P. A. P. Moran,et al.  The statistical analysis of the Canadian Lynx cycle. , 1953 .

[2]  S. Merler,et al.  Synchrony, scale and temporal dynamics of rock partridge (Alectoris graeca saxatilis) populations in the Dolomites , 1999 .

[3]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[4]  Ricard V. Solé,et al.  Bifurcations and Chaos in Ecology: Lynx Returns Revisited , 2000 .

[5]  J. Halley Ecology, evolution and 1 f -noise. , 1996, Trends in ecology & evolution.

[6]  O. Bjørnstad,et al.  Spatial population dynamics: analyzing patterns and processes of population synchrony. , 1999, Trends in ecology & evolution.

[7]  H. Joel Jeffrey,et al.  Chaos game visualization of sequences , 1992, Comput. Graph..

[8]  Jan Lindström,et al.  The Moran effect and synchrony in population dynamics , 1997 .

[9]  Peter Turchin,et al.  Rarity of density dependence or population regulation with lags? , 1990, Nature.

[10]  E. Ranta,et al.  The spatial dimension in population fluctuations , 1997, Science.

[11]  H. Tong,et al.  Common dynamic structure of canada lynx populations within three climatic regions , 1999, Science.

[12]  Thomas M. Powell,et al.  Ecological Time Series , 1994, Springer US.

[13]  Richard V. Solé,et al.  Order and chaos in a 2D Lotka-Volterra coupled map lattice , 1991 .

[14]  Ricard V. Solé,et al.  Spiral waves, chaos and multiple attractors in lattice models of interacting populations , 1992 .

[15]  R. Beverton,et al.  On the dynamics of exploited fish populations , 1993, Reviews in Fish Biology and Fisheries.

[16]  C. Elton,et al.  The Ten-Year Cycle in Numbers of the Lynx in Canada , 1942 .

[17]  H. Kokko,et al.  From arctic lemmings to adaptive dynamics: Charles Elton's legacy in population ecology. , 2007, Biological reviews of the Cambridge Philosophical Society.

[18]  C. Elton,et al.  Periodic Fluctuations in the Numbers of Animals: Their Causes and Effects , 1924 .

[19]  Veijo Kaitala,et al.  Travelling waves in vole population dynamics , 1997, Nature.

[20]  Robert M. May,et al.  Species coexistence and self-organizing spatial dynamics , 1994, Nature.

[21]  E. Ranta,et al.  Large-Scale Synchrony in the Dynamics of Capercaillie, Black Grouse and Hazel Grouse Populations in Finland , 1996 .

[22]  C. Hewitt,et al.  The Conservation of the Wild Life of Canada , 1921, Canadian Historical Review.

[23]  James R. Gilbert,et al.  Analytical Population Dynamics , 1994 .

[24]  David A. Elston,et al.  Spatial asynchrony and periodic travelling waves in cyclic populations of field voles , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  W. Sutherland,et al.  Dispersal and spatial scale affect synchrony in spatial population dynamics , 1999 .

[26]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.

[27]  Jan Lindström,et al.  Synchrony in population dynamics , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[28]  Eörs Szathmáry,et al.  Biologists Put on Mathematical Glasses , 1996, Science.

[29]  T. Clutton‐Brock,et al.  Noise and determinism in synchronized sheep dynamics , 1998, Nature.

[30]  Ricard V. Solé,et al.  Modeling spatiotemporal dynamics in ecology , 1998 .

[31]  Kaitala,et al.  Travelling wave dynamics and self-organization in a spatio-temporally structured population , 1998 .

[32]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[33]  Robert M. May,et al.  The spatial dynamics of host-parasitoid systems , 1992 .

[34]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[35]  E. Ranta,et al.  Spatially autocorrelated disturbances and patterns in population synchrony , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[36]  Ian P. Woiwod,et al.  Spatial synchrony in the dynamics of moth and aphid populations , 1993 .

[37]  Michael P. Hassell,et al.  Spatial structure and chaos in insect population dynamics , 1991, Nature.

[38]  A. J. Lotka,et al.  Elements of Physical Biology. , 1925, Nature.

[39]  Takashi Saitoh,et al.  SYNCHRONY AND SCALING IN DYNAMICS OF VOLES AND MICE IN NORTHERN JAPAN , 1999 .